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S U M M A R Y
Stress waves, known as acoustic emissions (AEs), are released by localized inelastic deforma-
tion events during the progressive failure of brittle rocks. Although several numerical models
have been developed to simulate the deformation and damage processes of rocks, such as
non-linear stress–strain behaviour and localization of failure, only a limited number have been
capable of providing quantitative information regarding the associated seismicity. Moreover,
the majority of these studies have adopted a pseudo-static approach based on elastic strain en-
ergy dissipation that completely disregards elastodynamic effects. This paper describes a new
AE modelling technique based on the combined finite-discrete element method (FEM/DEM),
a numerical tool that simulates material failure by explicitly considering fracture nucleation
and propagation in the modelling domain. Given the explicit time integration scheme of the
solver, stress wave propagation and the effect of radiated seismic energy can be directly cap-
tured. Quasi-dynamic seismic information is extracted from a FEM/DEM model with a newly
developed algorithm based on the monitoring of internal variables (e.g. relative displacements
and kinetic energy) in proximity to propagating cracks. The AE of a wing crack propagation
model based on this algorithm are cross-analysed by traveltime inversion and energy estima-
tion from seismic recordings. Results indicate a good correlation of AE initiation times and
locations, and scaling of energies, independently calculated with the two methods. Finally,
the modelling technique is validated by simulating a laboratory compression test on a granite
sample. The micromechanical parameters of the heterogeneous model are first calibrated to
reproduce the macroscopic stress–strain response measured during standard laboratory tests.
Subsequently, AE frequency–magnitude statistics, spatial clustering of source locations and
the evolution of AE rate are investigated. The distribution of event magnitude tends to decay
as power law while the spatial distribution of sources exhibits a fractal character, in agreement
with experimental observations. Moreover, the model can capture the decrease of seismic b
value associated with the macrorupture of the rock sample and the transition of AE spatial
distribution from diffuse, in the pre-peak stage, to strongly localized at the peak and post-peak
stages, as reported in a number of published laboratory studies. In future studies, the validated
FEM/DEM-AE modelling technique will be used to obtain further insights into the microme-
chanics of rock failure with potential applications ranging from laboratory-scale microcracking
to engineering-scale processes (e.g. excavations within mines, tunnels and caverns, petroleum
and geothermal reservoirs) to tectonic earthquakes triggering.

Key words: Numerical solutions; Geomechanics; Fracture and flow; Mechanics, theory, and
modelling.

1 I N T RO D U C T I O N

Acoustic emissions (AEs) are broadly defined as high-frequency
transient elastic waves generated by a sudden release of stored
strain energy within a material (Lockner 1993). In brittle rocks,

AEs are triggered by localized inelastic deformation events, such
as microcracking, pore collapsing and grain boundary slip, that
characterize the material deformation and damage process.

In laboratory studies, AE recording has been used in passive geo-
physical monitoring to investigate the fracturing behaviour of brittle
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rocks. Unlike traditional integral rock damage indicators, such as
non-linear deformation and variation of elastic wave propagation
properties, the AE method offers the advantage of detecting indi-
vidual fracture events. Consequently, AE source location has been
employed to experimentally observe the nucleation and growth of
cracks and their eventual coalescence into a macroscopic fault (e.g.
Lockner et al. 1991; Thompson et al. 2006; Benson et al. 2008).
Using the variation of AE properties which occurs in response to
the damage evolution, the staged character of the brittle fracturing
and the associated characteristic stress threshold values have been
analysed (Eberhardt et al. 1997). Furthermore, the Kaiser effect, the
mechanism by which AEs are only detected during the first loading
to a certain stress state under compression, has been used to as-
sess the amount of damage developed in rocks (e.g. Holcomb et al.
1990). It has also been demonstrated that the seismogenic (i.e. brit-
tle) failure is a self-similar and scale-invariant process over a dimen-
sion range that spans several orders of magnitude, from grain-scale
cracking to mining-induced seismicity and tectonic earthquakes
(Scholz 1968a; Hanks 1992). Therefore, the acoustic activity of
rock recorded in the laboratory has been considered a small-scale
equivalent system for the seismicity of rock masses or in the Earth’s
crust.

In the field, AE monitoring was historically introduced as a mine
design and rockburst prediction tool (Obert & Duvall 1957). Subse-
quently, the method has been employed to characterize the evolution
of the damaged zone around underground excavations (e.g. Young
& Maxwell 1992; Falls & Young 1998; Pettitt et al. 2002), and, in
petroleum and geothermal engineering, to study the fracture zone
induced by fluid injection during hydraulic fracturing (e.g. Pearson
1981; Majer & Doe 1986; House 1987).

A great deal of research has focused on developing and validat-
ing numerical models that could capture the progressive mechanical
breakdown of rocks (see Yuan & Harrison 2006). However, only a
limited number have been capable of providing quantitative output
relative to the associated acoustic activity. Moreover, the majority of
these studies have been based on a static approach that disregards the
radiated seismic energy and the elastic wave propagation, as further
explained in Section 2. According to Hazzard & Young (2002), two
main reasons can be identified for modelling AE in rocks. First, the
ability to extract and quantify seismic information from the models,
together with the simulated stress–strain behaviour and damage ob-
servations, can provide an additional tool to validate the modelling
methodology and increase the confidence in the simulation results.
Secondly, a successfully validated AE model can be used to inves-
tigate the relationships between simulated seismicity, damage and
deformation characteristics, and model properties.

In this study, an innovative numerical approach, based on the
combined finite-discrete element method (FEM/DEM) (Munjiza
2004; Mahabadi et al. 2012a), is proposed to simulate AE asso-
ciated with the brittle failure of rock. It is shown that the seismic
information, including AE initiation time, location and energy, ob-
tained from the analysis of FEM/DEM synthetic seismograms can
be related to the information extracted by monitoring the motions
of AE sources within the model. The 2-D modelling technique is
validated by simulating the acoustic activity of a granite sample
under uniaxial compressive load.

The paper is organized as follows. In Section 2, the major studies
on AE simulation are briefly reviewed. In particular, differences be-
tween material representation types (e.g. ‘continuum’ versus ‘dis-
continuum’) and AE modelling approaches (i.e. static versus dy-
namic) are highlighted. In Section 3, the fundamental principles of
FEM/DEM are illustrated with special emphasis on the assumptions

inherent in the material failure modelling technique. In Section 4,
the simulation of AE is discussed within the context of FEM/DEM.
A new algorithm, developed to extract seismic information by in-
ternally monitoring AE sources, is presented (Section 4.2). The
AE of a wing crack propagation model based on this algorithm
are cross-analysed by traveltime inversion and energy estimation
from seismic recordings (Section 4.3). Finally, in Section 5, the
results of a compression test simulation on a heterogeneous rock
are presented. The simulated acoustic activity is first analysed in
relation to the macroscopic stress–strain behaviour of the sample.
Subsequently, the AE frequency–magnitude statistics, clustering be-
haviour and rate evolution are discussed with reference to published
experimental results.

2 R E L AT E D S T U D I E S O N A E
S I M U L AT I O N

Three main modelling methodologies have been adopted to simulate
the acoustic activity associated with the failure process of brittle and
quasi-brittle materials: (i) continuum damage models, (ii) particle-
based DEM models and (iii) lattice models. Moreover, a fourth
class of models can be identified, which focuses exclusively on the
emission of acoustic waves from a single crack propagating in an
elastic medium.

In continuum damage models, the effect of fracturing on the ma-
terial mechanical behaviour is smeared over the material volume
that contains the potential crack by degrading the corresponding
material properties (e.g. strength or stiffness) according to a con-
tinuum law. Thus, the dynamics of crack nucleation and growth is
not explicitly considered and a mesoscopic description of the fail-
ure process is provided. The theoretical premises for the simulation
of AE based on elastic damage mechanics were first discussed by
Tang et al. (1997) and implemented in a finite-element code known
as RFPA (Tang 1997). Progressive failure of rock and associated
non-linear stress–strain behaviour was captured by an elastic–brittle
element constitutive law together with a heterogeneous distribution
of the rock parameters. In this context, AE was simulated by a static
approach: an acoustic event was associated with each damaged el-
ement and the corresponding elastic strain energy dissipation was
used as analogous of the released seismic energy. The aforemen-
tioned model was used to investigate the evolution of seismic energy
release during the failure process of heterogeneous rock specimens
in compression (Tang & Kaiser 1998), and to analyse the acoustic
activity and the Kaiser effect during a three-point bending test on
a concrete beam (Zhu et al. 2010). Following similar principles, a
number of other models have been introduced. For instance, Fang &
Harrison (2002) adopted a local degradation model to analyse the
brittle fracture of a rock sample under confined compression and to
simulate the associated released energy evolution. Similarly, Feng
et al. (2006) developed an elastoplastic cellular automata model to
simulate the acoustic activity of brittle rock under uniaxial com-
pression. A slightly different approach was developed by Amitrano
et al. (1999) on the basis of a local scalar damage model with ten-
sorial elastic interaction. In this model, the size of the events was
assumed proportional to the total number of elements damaged dur-
ing a single loading step. The approach was shown to be capable
of capturing power-law distributions of damage events in space and
size domains, and subsequently adopted to investigate the relation-
ship between seismic b value and brittle–ductile transition observed
during laboratory tests on granitic rocks (Amitrano 2003). A rheo-
logical model accounting for elastic deformation, viscous relaxation
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and evolution of damage was introduced by Lyakhovsky et al.
(1997), which was then used to simulate long histories of crustal
deformation and to study the coupled evolution of earthquakes and
faults (Lyakhovsky et al. 2001).

Particle-based DEM models represent the rock material as an
assembly of rigid circular or spherical particles that are bonded
together at their contact points. Although a relatively simple set
of micromechanical interaction laws is used, these models can re-
produce several typical features of the macroscopic rock behaviour
including elasticity, fracturing and damage accumulation (Potyondy
& Cundall 2004). Crack nucleation is simulated through breaking of
internal bonds while fracture propagation is obtained by coalescence
of multiple bond breakages. Particle-based DEM models simulate
quasi-static deformation by solving the equations of motion. There-
fore, elastodynamics effects including stress wave propagation and
cracking-induced acoustic emission can be explicitly simulated.
Hazzard & Young (2000) developed a technique to dynamically
quantify AE in a 2-D bonded-particle model for rocks. Particle
kinetic energy upon bond breakage was monitored and used to
directly quantify seismic energy radiated from the source. By clus-
tering multiple bond breakages together in space and time, realistic
b values were obtained for a confined compression test simulation
on granite. The aforementioned approach was further improved by
introducing moment tensor calculation based on change in contact
forces upon particle contact breakage, and was applied to the mi-
croseismic simulation of a mine-by experiment in a crystalline rock
(Hazzard & Young 2002) and of an excavation-induced fault slip
event (Hazzard et al. 2002). 3-D simulations of acoustic activity us-
ing particle-based DEM were proposed by Hazzard & Young (2004)
and Invernizzi et al. (2011). While the former represented the direct
extension of the 2-D method described earlier, the latter adopted a
simplified assumption in evaluating acoustic event size whereby the
event magnitude was assumed proportional to the number of broken
bonds in a given time interval. Nevertheless, the latter model was
able to reproduce the power-law distribution of event size and the
decrease of b value with increasing applied stress observed during
unconfined compression and three-point bending tests on concrete.

A class of methods directly related to the DEM particle models
is represented by the lattice (or network) models. Similar to DEM
models, continuum constitutive laws are replaced with a mechani-
cal system of springs or beams. However, unlike DEM models, the
particle contact pattern is fixed during the simulation and therefore
large displacements and deformation cannot be simulated. Hetero-
geneous material structure is modelled, for instance, by imposing
random failure thresholds on the springs or by removing a frac-
tion of the links. Due to their simple description of elasticity and
material microstructural disorder, lattice models are only used to
provide a mesoscopic description of the general statistics of the
fracturing process in brittle and quasi-brittle materials (Alava et al.
2006). An example of lattice model based on a scalar damage model
was introduced by Zapperi et al. (1997). Using the analogy between
mechanical fracture and fusion in a resistor network, the model cap-
tured amplitudes and intervals between sequential events distributed
according to a power law. The amplitude of events was assumed to
be equal to the number of links damaged for a given voltage (i.e.
stress) increment. Wang et al. (2000) developed a static lattice model
to study the rock failure and earthquake process. In particular, the
effect of crack density, represented by pre-existing broken bonds,
on the b value was investigated under the assumption of propor-
tionality between event magnitude and potential energy released by
a broken bond. Unlike the aforementioned quasi-static approaches,
the dynamic model of Minozzi et al. (2003) was used to explicitly

analyse the AE waveforms emitted by a propagating crack in a 2-D
lattice subjected to antiplanar deformation. The acoustic response
was related to the internal damage of the sample, and power-law
distributions of acoustic energy were obtained in agreement with
experimental observations.

Finally, it is worth mentioning an additional class of models
(e.g. Hirose & Achenbach 1991; Lysak 1996; Andreykiv et al.
2001; Bizzarri 2011), which focuses on the emission of acoustic
waves by solving the elastodynamic problem associated with the
initiation and subcritical growth of pre-existing crack-like flaws
of idealized shaped (e.g. penny-shaped, disc, ellipse). Based on a
continuum fracture mechanics approach, this type of models aims
at either quantifying the relationships between crack parameters
(e.g. crack area and stress intensity factor) and AE signal (e.g.
amplitude and frequency spectrum), or, through the application
of self-consistent friction laws, modelling the dynamic rupture of
seismogenic faulting processes (e.g. see Bizzarri 2011, for a review).

In the context of the first three classes of methods described
earlier, the numerical methodology adopted for this study, namely
FEM/DEM, uses continuum mechanics principles and DEM tech-
niques to describe the elastic deformation and the material fail-
ure process, respectively. Unlike the majority of the approaches
described earlier, the event seismic energy is estimated using a
quasi-dynamic technique, which explicitly evaluates the kinetic en-
ergy in proximity to spontaneously propagating cracks. Given the
mesoscopic representation of the fracturing process by means of
cohesive elements, the accurate simulation of dynamic crack prop-
agation and associated phenomena (see Freund 1990) is beyond the
scope of this work. Instead, the focus of this paper is on the ex-
traction of quasi-dynamic AE information from a numerical model
that aims at capturing the main features of the failure process in
brittle rocks (e.g. non-linear stress–strain behaviour, localization of
failure).

3 F U N DA M E N TA L P R I N C I P L E S
O F F E M / D E M

The combined FEM/DEM is a numerical method pioneered by
Munjiza et al. (1995) for the dynamic simulation of multiple in-
teracting deformable bodies. The technique combines DEM algo-
rithms that capture the interaction and fracturing of different solids
with continuum mechanics principles that describe the elastic de-
formation of discrete bodies. For this study, a 2-D FEM/DEM code,
known as Y-Geo (Mahabadi et al. 2012a), was used. This code rep-
resents an extension of the original Y2D code of Munjiza (2004)
and is undergoing development at the University of Toronto for
geomechanical applications. All models illustrated in the following
sections were solved under plane stress conditions.

3.1 Governing equations

In FEM/DEM, each solid is discretized as a mesh consisting of
nodes and triangular elements. An explicit second-order finite-
difference time integration scheme is applied to solve the equations
of motion for the discretized system and to update the nodal co-
ordinates at each simulation time step. In general, the governing
equations for a FEM/DEM system can be expressed as

Mẍ + Cẋ = R(x), (1)

where M and C are the lumped mass and damping diagonal ma-
trices of the system; x is the vector of nodal displacements and R
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is the nodal force vector which includes the contributions from the
external loads, fl, the interaction forces acting across discrete bod-
ies, fi, the deformation forces, fe and the crack bonding forces, fc.
Numerical damping is introduced in the governing equation to ac-
count for energy dissipation due to non-linear material behaviour or
to model quasi-static phenomena by dynamic relaxation (Munjiza
2004). The matrix C is equal to

C = μI, (2)

where μ and I are the damping coefficient and the identity matrix,
respectively.

Interaction forces, fi, are calculated either between contacting
separated bodies or along internal discontinuities (i.e. pre-existing
and newly created fractures). In the normal direction, body impen-
etrability is enforced using a penalty method (Munjiza & Andrews
2000), while in the tangential direction, discontinuity frictional be-
haviour is simulated by a Coulomb-type friction law (Mahabadi
et al. 2012a). Deformation forces, fe, are computed on an element-
by-element basis under the assumption of isotropic linear elasticity.
Crack bonding forces, fc, are used to simulate material failure, as
further explained in the next section.

3.2 Material failure modelling

The progressive failure of rock material is simulated in FEM/DEM
by explicitly modelling crack initiation and propagation according
to the principles of non-linear elastic fracture mechanics (Dug-
dale 1960; Barenblatt 1962). As depicted in Fig. 1, dedicated four-
noded cohesive elements simulate the development of the Fracture
Process Zone (FPZ), a zone of non-linear material behaviour that

forms ahead of the crack tip due to interlocking and microcracking
(Labuz et al. 1985). The four-noded cohesive elements (referred
hereinafter to as crack elements) are embedded between the edges
of ‘all’ adjacent triangular element pairs from the very beginning
of the simulation (i.e. remeshing is not performed as the simulation
progresses). Therefore, the potential crack paths do not need to be
assumed a priori and arbitrary fracture trajectories can be captured
within the constraints imposed by the initial mesh topology.

In this study, a modified version of the crack element constitu-
tive response proposed by Munjiza et al. (1999) was adopted. The
bonding stresses, σ and τ , transferred by the material are decreas-
ing functions of the displacement discontinuity across the crack
elements[

σ

τ

]
= f (D) ·

[
ft

fs

]
, (3)

where ft and fs are the cohesive strengths in tension and shear,
respectively, and f (D) is a heuristic scaling function representing
an approximation of the experimental cohesive laws proposed by
Evans & Marathe (1968).

f (D) =
[

1 − a + b − 1

a + b
exp

(
D

a + cb

(a + b)(1 − a − b)

)]
·

× [a(1 − D) + b(1 − D)c] , (4)

where a, b, c are empirical constants equal to 0.63, 1.8 and 6.0,
respectively, and D is a damage factor comprised between 0 and 1.
As discussed later, the dimensionless damage factor D describes the
displacement jump across the cohesive surface. Also, f (D) is such
that f (0) = 1 (i.e. intact crack element) and f (1) = 0 (i.e. broken
crack element).

Figure 1. Material failure modelling in FEM/DEM. (a) Conceptual model of a tensile crack in a heterogeneous rock material (modified after Labuz et al.
1985). (b) Theoretical FPZ model of Hillerborg et al. (1976). (c) FEM/DEM implementation of the FPZ using triangular elastic elements and four-noded crack
elements to represent the bulk material and the fracture, respectively. (d) FEM/DEM representation of a fracturable body with continuum triangular elements
and embedded crack elements indicated in grey and pink, respectively. Triangular elements are shrunk for illustration purposes. Interpenetration of triangular
elements is discouraged by the strong stiffening response of the contact penalty formulation.
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Figure 2. Constitutive behaviour of the crack elements. (a) FPZ model for mode I. (b) Slip-weakening model for mode II. The specific fracture energy values,
GIc and GIIc, correspond to the area under the bonding stress-softening curves. The shape of the curves is based upon experimental complete stress–strain
curves obtained for concrete in direct tension (eq. (4), Evans & Marathe 1968; Munjiza et al. 1999). Note that the residual shear strength, fr, is computed
according to eq. (7) by the element pair interaction algorithm (Mahabadi et al. 2012a) even after the breakage of the embedded crack element (dashed line in
b). (c) Graphical representation of the coupling relationship between crack opening, o, and crack slip, s, for mixed-mode fracturing (eq. 9).

Depending on the local stress and deformation field, fractures
can nucleate and grow in mode I (i.e. opening mode), mode II
(i.e. sliding mode) or in mixed mode I–II. Similar to the cohesive
model originally proposed for concrete by Hillerborg et al. (1976),
a mode I crack initiates when the crack tip opening, o, reaches a
critical value, op, which is related to the cohesive tensile strength
of the rock, ft (Fig. 2a). As the fracture propagates and the crack
tip opening increases, the normal bonding stress, σ , is assumed to
decrease until a residual opening value, or, is reached and a traction-
free surface is created. In this case, the damage factor is therefore
defined as

D = o − op

or − op
. (5)

Mode II fracturing is simulated by a slip-weakening model concep-
tually similar to that of Ida (1972). A tangential bonding stress, τ ,
exists between the two fracture walls, which is a function of the
amount of slip, s, and the normal stress on the fracture, σn (Fig. 2b).
The critical slip, sp, corresponds to the cohesive shear strength of
the rock, fs, defined as

fs = c + σn · tan φi, (6)

where c is the internal cohesion, φi is the material internal friction
angle and σn is the normal stress acting across the crack element.
Upon undergoing the critical slip, sp, the tangential bonding stress
is gradually reduced to a residual value, fr, which corresponds to a
purely frictional resistance

fr = σn · tan φf , (7)

where φf is the fracture friction angle and σn is the normal stress
acting across the fracture surfaces. The residual shear strength, fr,
is computed according to eq. (7) by the element pair interaction
algorithm (Mahabadi et al. 2012a) even after the breakage of the
embedded crack element. In this case, the damage parameter is
therefore defined as

D = s − sp

sr − sp
. (8)

For mixed mode I–II fracturing, the coupling between crack opening
and slip is defined by (Fig. 2c)

D =
√(

o − op

or − op

)2

+
(

s − sp

sr − sp

)2

. (9)

As illustrated in Fig. 1(c), the effect of the crack bonding stress is
implemented in FEM/DEM using equivalent crack nodal forces, fc.

Since the elastic deformation before the onset of fracturing takes
place in the bulk material, no deformation should in theory occur
in the crack elements before the cohesive strength is exceeded.
However, a finite stiffness is required for the crack elements by the
time-explicit formulation of FEM/DEM. Such an artificial stiffness
is represented by the normal, tangential and fracture penalty values,
pn, pt and pf , for compressive, shear and tensile loading conditions,
respectively. For practical purposes, the cohesive contribution to the
overall model compliance can be largely limited by adopting very
high (i.e. dummy) penalty values (Munjiza 2004; Mahabadi 2012).

From an energetic point of view, as there is stress to be overcome
in propagating a crack, energy is dissipated during the fracturing
process. The material total strain energy release rate, Gc, corre-
sponds to the amount of energy absorbed per unit crack length
along the crack edge in displacing a crack from the critical to the
residual value. In general, Gc is obtained by integration of the
stress-softening curve (represented by eq. (4) during the debonding
process of the crack element and includes the contribution of (i) the
surface energy 2γ of the two newly created discontinuity surfaces,
(ii) the energy Gd consumed in the damage process around the crack
tip and (iii) the frictional fracture energy Gf . Gc is defined in terms
of the material properties, GIc and GIIc, which correspond to the
strain energy release rates for modes I and II fracturing, respec-
tively. Therefore, the crack residual displacement values, or and sr,
are such that

GIc =
∫ or

op

σ (o) do, (10)

GIIc = ∫ sr

sp
[τ (s) − fr] ds. (11)

Upon breakage of the cohesive surface, the crack element is re-
moved from the simulation and replaced by the interaction forces,
fi, described in the previous section. At this stage, the transition
from ‘continuum’ to ‘discontinuum’ is complete, finite displace-
ments and rotations of discrete bodies are allowed and new contacts
are automatically recognized as the simulation progresses, as typical
of the DEM modelling approach (see Cundall & Hart 1992).

4 F E M / D E M S I M U L AT I O N O F A E

4.1 Static versus dynamic modelling of crack propagation

During a FEM/DEM simulation, the rock is subjected to certain
loading conditions and strain energy is stored due to the elastic
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deformation of the triangular elements. Once the intrinsic strength
of the material is locally overcome, a new fracture is initiated and the
release of stored strain energy begins. As described in Section 3.2,
part of this energy is absorbed by the fracturing process itself and its
value, Gc, is related to the material input parameters GIc and GIIc. If
the crack surfaces slide against each other in a compressive stress
field, part of the released energy is dissipated as frictional work.
Frictional stress develops according to eq. (7), while the specific
frictional energy dissipated, Ef , depends on the total slip, s

Ef = fr · s. (12)

Under static (or quasi-static) conditions, crack extension is therefore
governed by

Gstat = Gc + Ef , (13)

where Gstat is the static strain energy release rate. As verified in
Section 4.3, failure events in FEM/DEM are characterized by an
excess of strain energy released with respect to Gc and Ef (i.e.
G > Gc + Ef ), thus the simulated rupture phenomena are often
accompanied by the radiation of kinetic energy, Ek, in the form of
acoustic emission.

In the framework of continuum fracture mechanics, the mathe-
matical description of the rapid crack propagation process includes
the inertial resistance provided by material particles displaced on
opposite crack walls (Freund 1990). Under dynamic conditions, the
total energy available for work, Gdyn, is indeed partitioned into frac-
ture energy, Gc, frictional dissipation, Ef and radiated energy, Ek.
That is, an additional kinetic term is added to the energy equation
for crack extension as a mean to dissipate the excess energy result-
ing from the imbalance in the two driving force terms (Kanamori &
Brodsky 2004):

Gdyn = Gstat − 1

2

∂ Ek

∂a
, (14)

where a represents the crack area. Then, the crack extension crite-
rion becomes Gdyn = Gc + E f instead of eq. (13). Calculating the
radiated energy of a propagating crack is in general a challenging
task, which involves computing the displacements as a function of
the crack length from the equations of motion for the crack tip in a
deformable solid (Lawn 1993). Given the complexities associated
with the dynamic stress field and the strain energy flux into the crack
tip, simplifying assumptions are generally made. In this context, the
rupture speed, Vr, assumes a fundamental importance in determin-
ing the ratio of the dynamic to static energy release rate, Gdyn/Gstat,
for a propagating crack. For instance, for a mode I fracture this ratio
can be expressed as (Freund 1972)

Gdyn

Gstat
= 1 − Vr

cR
, (15)

where cR is the Rayleigh wave speed of the material. Under quasi-
static conditions (i.e. Vr ∼ 0), no energy is radiated and all released
strain energy is dissipated in the fracture process zone. Conversely,
for rupture speed values approaching cR, all energy is radiated as
seismic energy. Furthermore, the rupture speed, Vr, directly affects
the characteristics of the emitted stress wavefield (Section 4.3.7).

The numerical representation of material damage in FEM/DEM
is based on a mesoscopic description of the fracturing process using
a cohesive crack approach in combination with discrete elements.
The elastodynamic problem briefly introduced above is not con-
sidered in its entirety and thus the numerical technique does not
aim at fully capturing the phenomena occurring during dynamic
crack propagation. Nevertheless, quasi-dynamic seismic informa-

tion associated with the brittle failure process can be extracted from
a FEM/DEM simulation despite the simplified representation of
the fracturing process. The focus of the FEM/DEM technique is
on capturing the brittle fracture process, and the validation of the
AE modelling methodology relies mainly on the analysis of the
emergent AE statistics for a compression test simulation on rock
(Section 5).

Two approaches were considered to obtain quantitative informa-
tion on the acoustic activity of a FEM/DEM simulation. The first
approach takes advantage of the discrete representation of the mate-
rial and of the explicit dynamic solver of the method. This technique,
which is described in Section 4.2, is based on the internal monitor-
ing of the node motions during crack propagation. An alternative
approach employs the standard seismic source inversion techniques
based on traveltimes picked from recordings at selected locations
on the edges of the model, as shown in Section 4.3. In general,
the latter approach suffers from two major limitations. First, as the
simulation progresses, new fractures are generated, more energy is
emitted and consequently the level of noise increases. Therefore, to
be able to record clearly separated events in time, the model needs
to be loaded very slowly resulting in running times that are not ac-
ceptable at the moment. Secondly, damage accumulation inside the
model results in an extensive loss of continuity which makes wave-
form analysis impractical after the eventual failure. Nevertheless,
if particular fracturing conditions such as those of Section 4.3 are
reproduced, the AE information independently obtained by these
two methods can be related.

4.2 Internal monitoring of AE sources

The newly developed AE algorithm directly monitors the relative
displacement of crack surfaces and records the kinetic energy of
nodes in proximity to propagating fractures. As in seismology, for
each acoustic event the following parameters can be numerically
assessed: (i) source location, (ii) fracture mode, (iii) initiation time
and (iv) event seismic energy and magnitude. Note that in the con-
text of this paper the term seismic energy refers to a mesoscopic
numerical representation of the actual seismic energy radiated from
acoustic events in the fracture process zone.

The breakage of each crack element is assumed to be an acoustic
event with location coincident with the centroid of the element itself.
The fracture mode is derived from the relative displacement of the
fracture edges according to the constitutive behaviour illustrated in
Fig. 2. Since crack element failure occurs over a finite time interval,
due to its softening behaviour, the assessment of the initiation time
is based on the analysis of the kinetic energy of the crack element.
It was verified that softening and rupture of a crack element are
typically accompanied by the evolution of the kinetic energy of
the four crack nodes reported in Fig. 3. The initiation time, Ti, is
assumed to be the time at which the kinetic energy of the crack
element reaches a maximum.

The associated event seismic energy, Ee, is calculated from the
kinetic energy at the initiation time by the following algorithm,
similar to the one developed by Hazzard & Young (2000) for a
particle-based DEM model:

(1) When the peak strength of a crack element is reached (i.e.
the element is yielded), the kinetic energy of the four nodes of the
crack element is stored in memory as Ek,y :

Ek,y =
4∑

i=1

miv
2
i,y, (16)
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Figure 3. Example of evolution of crack normal bonding stress, σ , and
kinetic energy of four crack nodes, Ek, as a function of time, T, for a mode
I failing crack element.

where mi and vi, y are the nodal mass and nodal velocity at the time
of yielding T = Ty, respectively.

(2) The kinetic energy, Ek(t), of the four nodes is monitored until
the crack residual displacement is reached (i.e. the element fails);
the change in kinetic energy is calculated at each time step as

�Ek(t) = Ek(t) − Ek,y . (17)

(3) The seismic energy released by each crack breakage is as-
sumed to be equal to the maximum value of �Ek attained from the
time of yielding, Ty, to the time of failure, Tf , thus corresponding
to the initiation time Ti:

Ee = max
[Ty,Tf ]

�Ek(t). (18)

(4) Finally, the event magnitude, Me, can be calculated from
the event seismic energy, Ee, using, for instance, the relationship
proposed by Gutenberg (1956):

Me = 2

3
(log Ee − 4.8) . (19)

It is noteworthy that, at this stage, the technique considers only
the seismic energy radiated from the nucleation of new fractures
within intact rock material. Thus, the acoustic emissions derived
from crack reactivation, such as stress waves generated by slippage
along pre-existing discontinuities, are ignored.

4.3 Seismic analysis of AE

The simulation of tensile crack initiation and propagation from a
pre-existing flaw was used to investigate the correspondence be-
tween the AE information extracted using the technique described
in Section 4.2 and that derived from the analysis of recorded syn-
thetic seismograms. The stress concentration induced in a homoge-
neous medium by the pre-existing crack was exploited to produce
strongly localized acoustic events and hence to facilitate the seismic
analysis. However, unlike classic fracture mechanics approaches,
FEM/DEM does not require in general the presence of crack-like
notches or flaws to simulate fracture nucleation and propagation, as
illustrated in Section 5.

4.3.1 Model description

The model consisted of a 50 mm × 100 mm homogeneous sample
containing a 5-mm long linear flaw inclined at 45◦ and positioned
at the centre of the model (Fig. 4). The sample was discretized by a
Delaunay triangulation with an average edge size h = 0.70 mm and
a total of 21 600 triangular elements.

A constant strain rate was imposed to the model by means of two
rigid platens moving in opposite directions at a constant velocity of
0.05 m s−1. This loading rate represented the lowest value that could
be used for the given element size while keeping the running time
within acceptable limits. A constant integration time step of 5 ×
10−9 s was used to solve eq. (1). The material properties reported in
Table 1 were assumed for this simulation. The results reported in the
following subsections were obtained for a damping coefficient value
μ = 7.4 × 103 kg m s−1, which approximates twice the theoretical
critical damping, μc, assuming that each element of size h (0.70 mm)
behaves as a one-degree-of-freedom mass-spring-dashpot system:

μc = 2 h
√

ρE . (20)

Figure 4. (a) Configuration of a pre-existing straight flaw and tension wing cracks growing in a compressive stress field. (b) Zoomed-in view of the centre
of the FEM/DEM model. Top and bottom wing cracks (shown in red), corresponding to acoustic events 1 and 2 (Section 4.3.3), nucleate at σ1c = 7.0 MPa.
(c) FEM/DEM fracture pattern corresponding to the specimen ultimate stress at failure, σ1u = 32 MPa.
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Table 1. Sample properties for the wing crack simulation.

Parameter Value

Density, ρ (kg m−3) 2300
Young’s modulus, E (GPa) 3
Poisson’s ratio, ν (–) 0.29
Internal friction angle, φi (◦) 35
Internal cohesion, c (MPa) 15
Fracture friction angle, φf (◦) 35
Tensile strength, ft (MPa) 3
Mode I fracture energy, GIc (J m−2) 2.0
Mode II fracture energy, GIIc (J m−2) 10
Damping coefficient, μ (kg m s−1) 7.4 × 103

Normal contact penalty, pn (GPa m) 30
Tangential contact penalty, pt (GPa m−1) 3
Fracture penalty, pf (GPa) 15
Sample-platen friction coefficient, k (–) 0.1

This value represented an acceptable compromise between noise
reduction and AE wave amplitude attenuation, as further discussed
in Section 4.3.6.

4.3.2 Analysis of onset of crack growth in the framework of linear
elastic fracture mechanics (LEFM)

The nucleation of tension cracks from pre-existing flaws subjected
to a compressive stress field and their growth in the direction of
maximum compression have been experimentally studied by several
authors (e.g. Brace & Bombolakis 1963; Hoek & Bieniawski 1965;
Nemat-Nasser & Horii 1982). As discussed by Horii & Nemat-
Nasser (1986), this basic micromechanism can be used to explain
several features of the failure of brittle rocks, including the transi-
tion from axial splitting mode of failure to faulting, if confinement
is applied, and the transition from brittle to ductile behaviour, when
the confining pressure is suitably large. In the framework of LEFM,
this phenomenon is typically analysed with reference to the 2-D
configuration illustrated in Fig. 4(a). The model consists of a pre-
existing straight crack of length 2c immersed in a homogenous,
isotropic and linear elastic medium, and subjected to the far-field
stresses, σ 1 and σ 2. The flaw is inclined at angle γ to the direction
of σ 1 and the extended tension cracks are assumed to be straight
lines of length l. A number of approximate, closed-form solutions
of this boundary-value problem have been proposed in terms of
stress intensity factors, KI and KII, at the site of wing crack nu-
cleation, and wing crack orientation, θ (see Lehner & Kachanov
1996, for a review). As shown in Fig. 4(b), the FEM/DEM model
correctly captures the formation of two tensile fractures nucleating
from the flaw tips. These cracks, which are induced by the slid-
ing of the flaw surfaces under unconfined compression (σ 2 = 0),
initiate along two crack elements inclined at angle θ = 64◦ to the
pre-existing discontinuity. The results of the FEM/DEM simulation
were compared to a number of LEFM solutions by computing the
applied far-field stress, σ1c, at the onset of wing crack growth with
both approaches. In the FEM/DEM simulation, a value of σ1c equal
to 7.0 MPa was derived from the nodal reaction forces recorded at
the loading platens. This value represented about 21 per cent of the
ultimate stress at failure of the specimen, σ1u = 33 MPa. For the
LEFM solutions, σ1c was obtained by imposing the condition

KI(2c, γ, μ, θ, l, σ1, σ2) = KIc, (21)

where KI was calculated for each analytical model using the param-
eters reported in Table 2 corresponding to the FEM/DEM configura-

Table 2. Parameters used for the wing crack
growth analysis using LEFM models.

Parameter Value

Flaw length, 2c (mm) 5
Flaw inclination, γ (◦) 45
Flaw friction coefficient, μ (–) 0.7
Wing crack inclination, θ (◦) 64
Wing crack length, l (mm) 0.7
Lateral confining pressure, σ 2 (MPa) 0

Table 3. Comparison of compressive stresses at the onset of crack growth,
σ1c, obtained using different LEFM models with the FEM/DEM simulation
result.

Analysis type Critical compressive stress, σ1c (MPa)

LEFM model
Cotterell & Rice (1980) 5.1
Zaitsev (1985) 6.9
Horii & Nemat-Nasser (1986) 14.6
Lehner & Kachanov (1996) 8.5

FEM/DEM simulation 7.0

tion of Fig. 4, and the mode I fracture toughness value, KIc = 0.077
MPa

√
m, was estimated by the following relationship (Irwin 1957):

GIc = K 2
Ic

E
, (22)

where E and GIc are the Young’s modulus and mode I fracture energy
release rate, respectively (Table 1). The comparison of σ1c values
reported in Table 3 indicate that the FEM/DEM result falls within
the range predicted by the different LEFM models. Discrepancies
between solutions are due to varying modelling assumptions within
the LEFM models (Lehner & Kachanov 1996) and between the
LEFM and FEM/DEM approaches. In particular, the LEFM theory
is underpinned by the lack of a plastic zone at the tip of a crack
which implies a fully elastic behaviour with stress singularities.
Conversely, in FEM/DEM, an FPZ develops ahead of the crack tip
once the cohesive strength is reached (Section 3.2). Also, the angle
of crack propagation in the FEM/DEM cohesive fracture model is
constrained along the edges of triangular elements and the details of
the crack tip stress and strain fields are not resolved by the relatively
coarse numerical discretization with constant-strain elastic elements
(Fig. 4b).

As the simulation progresses, the two fractures tend to align
themselves in the direction parallel to the maximum principal stress.
The eventual failure of the sample involves the development of
secondary shear fractures and macroscopic axial splitting (Fig. 4c).

4.3.3 Simulated AE

The above described wing cracking process was accompanied by
the radiation of kinetic energy from the two tensile fractures, as pre-
liminarily indicated by the simulated evolution of particle velocity
field in the sample (Fig. 5). Hence, the synthetic acoustic activ-
ity was simultaneously monitored using the technique illustrated in
Section 4.2 and two sets of receivers positioned on the left and right
side of the sample (Fig. 6a). Particle velocities were recorded at
these receivers to mimic the effect of piezoelectric transducers used
in actual AE experiments.
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Figure 5. Contour plot of x- and y-components of particle velocity in the sample for T = [1.800, 1.950] ms of the wing crack propagation simulation.
Background velocity field prior to fracturing (T = 1.800 ms) is induced by the loading platens moving in opposite direction with a constant vertical velocity of
0.05 m s−1. The lateral expansion of the sample is due to the Poisson’s effect. Note also the constraint placed on the lateral deformation at the top and bottom
sample boundaries by the frictional resistance of the platen-sample interface. Two fracture-induced energy releases occur at T = [1.860, 1.870] and T = [1.890,
1.900] ms. These events are associated with two new fractures nucleating from the top and bottom tip of the pre-existing crack and correspond to events 1 and
2 of Fig. 6(b), respectively.

Figure 6. (a) Model and receiver geometry for the wing crack propagation simulation together with simulated fracture (i.e. source) pattern. The broken crack
elements (shown in red) cluster in two macroscopic fractures originating from the tips of the diagonal flaw. Two sets of receivers placed on the left- and
right-side edges are indicated by blue dots. The location of the receiver [25, 0.0] mm discussed in Sections 4.3.5 and 4.3.6 is indicated by an orange square.
(b) A zoomed-in view of the centre of the sample showing the associated acoustic events in circles; minor events with Ee ≤ 1 nJ are denoted by grey circles
and major events are in black (for groups 1, 4), blue (for group 2) and green (for group 3) circles. Inverted event locations based on manual traveltime picks
for groups 2 and 3 and their associated error bars are indicated by blue and green crosses. Note the proximity between the FEM/DEM major event locations
and inverted locations. The virtual receiver at [2.5, 2.7] mm discussed in Section 4.3.6 is indicated by a red square. (c) x-Component record section of velocity
seismograms between 2 and 9 ms for the top half of the receivers on the right edge. Seismograms have been shifted along y-axis to allow proper display. Time
ranges for the four event groups recorded by the FEM/DEM modelling (listed in Table 4) are identified below the recorded section with peak times of individual
events indicated by vertical lines. The manually picked first arrivals for groups 2 and 3 are indicated by red vertical lines. All seismograms are of the same
scale and the maximum amplitude of the bottom velocity seismogram between 4 and 5 ms is 0.04 m s−1.
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Table 4. Event groups for the analysis of the record section for the wing
crack simulation. Major events are identified as events with significant in-
ternally recorded energy (i.e. Ee > 1 nJ), while rest of the events within the
defined time ranges are listed under minor events.

Group number Time range (ms) Major events Minor events

1 [1.8, 2.02] events 1, 2
2 [4.1, 5.0] events 6, 8, 9 events 3, 5
3 [5.8, 6.7] events 10, 11, 12, 13 events 4, 7
4 [7.7, 8.5] events 14, 15

4.3.4 Traveltime inversions of acoustic emission

The main arrivals of various AE events cluster in time, as highlighted
by the x-component record section (Fig. 6c) for the top half of
receivers at the right-side edge (Fig. 6a). In particular, four distinct
event groups may be identified from the record section before the
catastrophic failure of the sample at T = 9 ms, corresponding to
a sharp increase of fracture nucleation within the model (Fig. 4c).
Based on the internally recorded energy by FEM/DEM, each group
consists of major (i.e. Ee > 1 nJ) and minor (i.e. Ee ≤ 1 nJ) events
as listed in Table 4. Since events within each group may arrive close
in time (Fig. 6c), a distinction of individual events can be difficult.

On the other hand, Fourier analysis of the record section showed
dominant frequencies of 8–10 kHz (also see more discussions in
Sections 4.3.6 and 4.3.7). With a Vp value of 1300 m s−1 (calculated
from the elastic properties of Table 1), the dominant wavelengths of
seismic waves at the receivers were 130–165 mm, far exceeding the
dimensions of the sample. Therefore, mapping fracturing details
based on backprojection or adjoint-type of source imaging tech-
niques (e.g. Ishii et al. 2005; Hjörleifsdóttir 2007) was precluded,
as their imaging resolution is generally similar to the dominant
wavelength of seismic waves. Seismic event relocation had to rely
mainly on the picking of phase onset corresponding to first arrivals
of events. However, the close temporal proximity of events within
each group and the long-period nature of the recordings limited the
picking exclusively to first arrivals for each event group, and in turn
provided hints to the location and origin time of only the first event
of significant energy in each group.

First arrival times for event groups 2 and 3 were hand-picked, as
shown by the red vertical lines in Fig. 6(c). The error bar assigned to
the arrival times at each receiver was estimated from the difference
between the x- and y-component time picks with a minimum of
0.001 ms for group 2 and 0.002 ms for group 3 (Fig. 7). A higher
minimum error bar was necessary for group 3 due to the preceding
ringings from the coda waves of group 2. Larger error bars are
generally observed for stations that are further away from the wing
crack as the diminishing amplitudes of the first arrivals reduce the
accuracy of the phase onset picking (Figs 6c and 7).

With first arrival times picked for 42 receivers on the left and
right edges, both event origin times and locations were inverted
based on a homogeneous and isotropic background model with
a P-wave velocity of 1300 m s−1. Arrival data were weighted by
the associated error bars, and errors on inverted origin times and
locations were computed based on data variance estimation from
the goodness of fit. The inverted event origin time (circles in Fig. 8)
falls between the yielding time Ty and peak time Ti of the first major
event in each group reported by FEM/DEM modelling. The inverted
locations with their associated error bars (crosses in Fig. 6b) clearly
overlap with the earlier minor events within each group (i.e. events
3 and 4 in groups 2 and 3, respectively), and are only slightly off
from the locations of the first major events (i.e. events 6 and 10 in
groups 2 and 3, respectively). Given the systematic errors associated

with the assumption of homogeneous isotropic background model
and the uncertainties in the phase-picking itself, error bars of the
inverted locations may be underestimated. Overall, the seismically
inverted event origin times and locations seem to coincide with the
first major event (or earlier minor events) in each event group, thus
validating the recordings of acoustic emission.

4.3.5 Energy scaling

It will also be interesting to estimate the radiated seismic energy
of AE events based on recorded velocity seismograms at receivers,
and compare it to the seismic energy Ee computed from eq. (18)
based on the source kinetic energy (see Section 4.2). An event that
is of larger magnitude and records higher kinetic energy in general
also releases more radiated seismic energy. However, again owing
to the large damping value and long-period nature of the arrivals on
model edges, it is difficult to estimate the absolute radiated seismic
energy, and only relative scaling of seismic energy among different
events can be compared in the attempt to validate the FEM/DEM
calculations.

On the other hand, due to the spatial and temporal proximity of
events in an event group (see Table 4), only the total or average seis-
mic energy for an event group can be examined. The instantaneous
seismic energy density at a receiver xr as a function of time is given
by

Eis(xr, t) ∼ ρ[V 2
x (xr, t) + V 2

y (xr, t)], (23)

where Vx and Vy are the x- and y-component velocity series recorded
at xr, and ρ is the density of the sample reported in Table 1. A qual-
itative scaling relation is visible between the instantaneous seismic
energy density, Eis(t), for the middle receiver on the right-side edge
(orange square in Fig. 6a), and the total seismic energy (i.e. sum of
Ee for all events within the group) reported by FEM/DEM (Fig. 9a).
A less crude estimate of radiated seismic energy density requires
temporal averaging and spatial integration of the instantaneous en-
ergy density for all receivers by

Es ∼ ρ

2πTg

∫
t

∑
r

[
V 2

x (xr, t) + V 2
y (xr, t)

]
�θr dt. (24)

The time integration is done over a length of Tg covering the few os-
cillations after first arrivals, and �θr is the azimuthal angle spanned
by neighbouring receivers. As we only seek relative comparisons
of radiated energy among different event groups, common factors
such as attenuation and geometric spreading are ignored. A linear
scaling is observed between the total seismic energy estimated for
each event group using eqs (24) and (18) (Fig. 9b), thus helping val-
idate the calculation of the event seismic energy based on the source
kinetic energy monitoring performed in the FEM/DEM modelling.

4.3.6 Effect of numerical damping

A uniform viscoelastic damping was applied to all triangular ele-
ments of the model to dissipate the transient oscillations induced by
the moving loading platens and the actual AE sources that would
have otherwise been trapped indefinitely within the modelling do-
main. This numerical damping, together with the geometric spread-
ing effect, reduces the amplitudes of arrivals as seismic waves travel
further from the source region, as indicated for instance by the de-
crease of first arrival amplitudes for receivers towards the top of the
right edge for both event groups 2 and 3 (Fig. 6c).
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Figure 7. First arrival picks of x- (black) and y-components (blue) for (a) event group 2 and (b) event group 3 for receivers at the left (receiver ID 22–42)
and right (receiver ID 1–21) edges of the model domain. Error bars are given by the discrepancy of x- and y-component picks with a minimum of 0.001 and
0.002 ms for event group 2 (graph a) and group 3 (graph b), respectively.

Figure 8. (a) Temporal distribution of AE events reported by FEM/DEM modelling and divided into four event groups. The origin times for event groups
2 and 3 are inverted, each given by two circles indicating the error bar associated with the estimate. However, time errors are generally very small, and the
two circles practically overlap. The time extent [Ty, Tf ] of major events are indicated by horizontal lines with internally recorded seismic energy, Ee (eq. 18),
plotted as vertical lines at their peak times, Ti. (b)–(d) Close-up views of (a) for event groups 1, 2 and 3.

Higher damping values result in more reduction of AE amplitude
and attenuation of high-frequency content, as highlighted by the x-
component particle velocities during events 1 and 2 (Fig. 10a) and
by the corresponding amplitude spectra (Fig. 10b), respectively. For
comparison, the recordings of a receiver (black line in Fig. 10a)
close to the AE source of event 1 ([2.5, 2.7] mm) are less affected
by the selection of damping value and geometrical spreading, and

hence more accurately represent the source time functions of in-
dividual events in the fracture process. Its spectrum indicates that
the dominant frequencies of the source processes are about 10–
20 kHz and not much energy is present above 60 kHz (black line in
Fig. 10b).

The critical damping value as expressed by eq. (20) is based
on the assumption that each triangular element behaves as a
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Figure 9. (a) A qualitative linear scaling relation between instantaneous seismic energy density, Eis, estimated for the centre receiver on the right side of the
sample (i.e. orange square in Fig. 6a) and the total seismic energy, Ee, calculated by internal kinetic energy monitoring, for all four event groups (see Table 4).
The total seismic energy values are plotted at the peak times of each event group. Squares of energy values are taken to better present four event groups on the
same graph. (b) Linear scaling relation between the squares of seismic energy, Es, estimated from receiver recordings and seismic energy, Ee, calculated by
internal kinetic energy monitoring, shown by the red symbols × for four event groups and a best fitting line.

Figure 10. (a) Velocity seismograms recorded for a receiver on the middle of the right edge [0, 25] mm (i.e. orange square in Fig. 6a) at 4×, 2×, 1×, 0.1×
the critical damping value (μc = 3.7 × 103 kg m s−1) used in FEM/DEM modelling for events 1 and 2. Velocity seismogram of a receiver located at [2.5, 2.7]
mm close to the sources of event 1 (i.e. red square in Fig. 6b) for a simulation with critical damping value is also shown. All seismograms are of the same scale
and the maximum amplitude of the bottom velocity seismogram is 0.01 m s−1. Symbols are plotted every 1000 data points only. Note the noise in the signal
induced by the loading platens for μ = 0.1 × μc. (b) Amplitude spectra of velocity seismograms in (a).

mass-spring-dashpot system (see Section 4.3.1). Therefore, theoret-
ically, for waves excited at the sources, damping is most significant
at frequencies

f � E

2πμc
. (25)

It then follows that for a simulation with parameter values listed in
Table 1 and twice the critical damping μc, AE events will mostly
generate oscillations below 60 kHz (Fig. 10b). Even at this fre-
quency limit, it is still difficult to image individual events based on
backprojection or adjoint techniques, as locating individual events
accurately at submillimetre scale would require frequency content
above ∼1.3 MHz). On the other hand, a further reduction in applied
damping will result in unwanted persistent oscillations induced by
the moving platens and will therefore hamper the seismic analysis.

Finally, although damping affected the recorded waveforms, it
was verified that, under the given loading rate, the failure load of
the sample was relatively insensitive to this parameter. In other
words, breakages of crack elements triggered by acoustic energy
(i.e. dynamically) can be neglected.

4.3.7 Rupture speed and AE frequency content

A qualitative explanation of the aforementioned low-frequency con-
tent of the AE source processes may be provided by considering
the propagation speed, Vr, of the simulated fractures. For example,
events 6, 8 and 9 (i.e. group 2) can be interpreted as a single crack
of length l = 3 × h = 2.1 mm. By approximating the duration
of crack propagation as Tf ,9 − Ty,6 = 0.55 ms, a rupture speed of
about 4 m s−1 is estimated. A similar analysis for the other sequences
of events reveals rupture speed values comprised between 2.5 and
55 m s−1. The low values of rupture speed in the FEM/DEM sim-
ulation (i.e. Vr ∼ (0.004 − 0.1)cR) imply that most of the released
energy is dissipated in the process zone as fracture energy (eqs 14
and 15) and that high frequencies are not generated at the source
(Fig. 10b) as a result of low accelerations of relative displacements
along crack elements.

This quasi-dynamic behaviour is a direct consequence of the
mechanical assumptions inherent in the cohesive crack approach
(Section 3.2). More specifically, the bonding stress-softening re-
lationships depicted in Fig. 2 lump into a discrete line the effect
of inelastic mechanisms, including acoustic events, that, in reality,
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characterize a finite volume of material ahead of the crack tip (i.e.
the FPZ, Fig. 1a). As a consequence, the simulated AE signals are
directly influenced by this mesoscopic representation of the process
zone, for which the advancement rate is relatively slow. Conversely,
acoustic signals measured in the laboratory are due to the multitude
of dynamic microfailures within the FPZ itself. As experimentally
shown by Zietlow & Labuz (1998), these events may be related to
the presence of microscale inhomogeneities in the material such as
mineral grains and pre-existing defects or voids. Owing to the truly
dynamic nature of these microcrack propagation phenomena and
their submillimetre size, much higher frequencies (e.g. 100 kHz–
2 MHz, Lockner 1993) are typically measured in the laboratory.

5 N U M E R I C A L E X A M P L E : A E O F
A G R A N I T E S A M P L E U N D E R
U N C O N F I N E D C O M P R E S S I O N

A model of uniaxial compression test was adopted to investigate
the acoustic activity associated with the failure process of a hetero-
geneous crystalline rock, namely Stanstead Granite, and to provide
further validation of the FEM/DEM-AE modelling technique.

The mechanical properties of the FEM/DEM model were first
calibrated to reproduce the macroscopic stress–strain response ob-
served during standard laboratory tests. The acoustic activity asso-
ciated with fracturing was then analysed with particular emphasis
on (i) the relation between AE and sample stress–strain response,
(ii) the frequency–magnitude statistics and (iii) the spatial cluster-
ing of AE sources. Since experimental measurements of AE were
not available, the results reported in the following are discussed
with reference to the typical behaviour reported in the literature for
granitic rocks.

5.1 Model description

The modelled rock sample cross-section consisted of a 54 mm ×
108 mm rectangle, meshed with a uniform, unstructured grid having
0.8 mm average element size and totalling approximately 16 000 tri-

angles. Uniaxial loading conditions were obtained by means of two
rigid platens moving in opposite directions with a constant velocity
equal to 0.125 m s−1, which corresponds to a strain rate of 2.3 s−1.
Although in actual experiments the sample is loaded at a signifi-
cantly slower rate, a preliminary analysis revealed that the possible
error in the simulated peak strength due to the different loading rate
was bound to 0.5 per cent (Mahabadi 2012). That is, the simulated
strengths approached constant values for loading rates smaller than
approximately 0.125 m s−1, which thus defined the upper bound-
ary of quasi-static loading conditions of the simulation. Conversely,
hardening effects were captured for higher strain rate values (i.e.
dynamic range). More details on the FEM/DEM simulation of strain
rate effects under true dynamic conditions can be found in Mahabadi
et al. (2010a). Equations of motion for the discretized system were
integrated with a time step of 5 × 10−6 ms; this value was the largest
time step size that ensured numerical stability for the explicit time
integration scheme of the code. The FEM/DEM Graphical User In-
terface Y-GUI (Mahabadi et al. 2010b) was used to assign boundary
conditions and material properties to the model.

The heterogeneous spatial distribution of mineral phases was
stochastically generated based on a discrete Poisson distribution of
the rock mineral composition with 71 per cent feldspar, 21 per cent
quartz and 8 per cent biotite (Fig. 12a). Material properties adopted
for each mineral are summarized in Table 5. To simulate the pres-
ence of defects within the rock microstructure, the mode I fracture
energy values, GIc, for the interfaces between biotite and feldspar,
biotite and quartz and quartz and feldspar were reduced to 0.05, 0.05
and 0.6 J m−2, respectively. Note that an equivalent homogeneous
distribution of material properties would have resulted in the inabil-
ity of reproducing any localized crack element failure (i.e. acoustic
event) before the macroscopic rupture of the sample. As typical of
the DEM modelling methodology, following an iterative calibration
procedure, friction, cohesion and tensile strength of the rock min-
eral interfaces were varied until the emergent Uniaxial Compressive
Strength (UCS) of the model closely matched the value obtained
from laboratory testing. Normal contact penalty, tangential contact
penalty and fracture penalty values were assumed equal to 10×, 1×
and 5× the Young’s modulus value, respectively (Mahabadi 2012).

Table 5. Mineral properties of the Stanstead Granite sample for the uniaxial compression test simulation.

Property Feldspar Quartz Biotite

Volume fraction (per cent) 71 per centa 21 per centa 8 per centa

Density, ρ (kg m−3) 2600b 2600b 2800b

Young’s modulus, E (GPa) 56.4c 83.1c 17.2c

Poisson’s ratio, ν (–) 0.32b 0.07b 0.36b

Internal friction angle, φi (◦) 51.8d 51.8d 51.8d

Internal cohesion, c (MPa) 24.2d 24.2d 24.2d

Tensile strength, ft (MPa) 5.5e 11.4e 4.2e

Mode I fracture energy, GIc (J m−2) 310f 907f 599f

Mode II fracture energy, GIIc (J m−2) 620g 1814g 1198g

Platen-mineral friction coefficient, k (–) 0.1h 0.1h 0.1h

aFrom thin section and μCT analysis (Mahabadi 2012).
bFrom Mavko et al. (2009).
cMeasured by microindentation testing (Mahabadi 2012; Mahabadi et al. 2012b).
dAverage (bulk) rock value from uniaxial and biaxial compression testing (Mahabadi 2012).
eEstimated by scaling the bulk tensile strength of the rock using the fracture toughness values: ft,min = ft,rock ·
KIc,min/KIc,rock.
fEstimated from values of mode I fracture toughness, KIc, measured by microindentation testing (Mahabadi 2012)
(GIc = K 2

Ic/E).
gAssumed equal to 2 × GIc.
hAssumed equal to 0.1.
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A critical viscous damping was applied to the model. Further details
on the model calibration procedure and experimental results can be
found in Mahabadi (2012).

Since the quality of AE seismograms was heavily influenced by
the high loading rate and the relatively diffuse damage pattern, tem-
porally separated events could not be recorded, and thus a seismic
analysis, as explained earlier in Section 4.3, was not realized. There-
fore, AE analysis had to rely only on the internal monitoring of AE
sources (Section 4.2).

5.2 Stress–strain behaviour and acoustic activity

Emergent UCS value, Young’s modulus and Poisson’s ratio of the
sample are equal to 142.9 MPa, 49.7 GPa and 0.25, respectively.
These values are in good agreement with the respective experimen-
tal values of 147.3 MPa, 52.5 GPa and 0.23, used as calibration tar-
gets. The onset of AE coincides with the initiation of non-linearity
in the lateral strain curve while, in the axial direction, the response
of the model is linear until a displacement of about 0.250 mm is
reached (stages b and c, Fig. 11). With increasing applied strain,
more crack elements start to break, more damage is accumulated and
acoustic energy emitted, resulting in the load-displacement curve
beginning to deviate from linearity. Further increase of displace-
ment leads to an increase in the acoustic event count (stages c to f ).
Cracking in the pre-peak non-linear stage is diffuse over the sam-
ple surface and dominated by extensional failure type (Figs 12b–f).
Furthermore, the friction at the interface between rock sample and
platens effectively constrains the lateral deformation of the rock
sample and, therefore, fracturing tends to be inhibited in the lower
and upper part of the sample. Analysis of failure type distribution
in stages a to e (Fig. 13) indicates that the microfracturing process
within the crystalline structure of the numerical sample correlates
exclusively with the breakage of weaker interfaces at the biotite–
feldspar and biotite–quartz contacts.

Figure 11. Axial stress, σ , versus platen displacement, δa, and lateral dis-
placement, δl, for the UCS test simulation, also showing counts of acoustic
events as columns. Letters a to i indicate the displacement intervals adopted
to analyse the evolution of the seismic b value and the fractal dimension
D in Sections 5.3 and 5.4, respectively. The platen displacement, δa, was
used in lieu of the axial strain, εa, because of the potential error that can be
introduced into the AE count by duplicate values from the post-peak region,
where the axial strain decreases.

As the sample approaches its peak strength, a sensible increase
in the acoustic event count is recorded (stage g) (Fig. 12 e). In this
stage, 10 and 1 per cent of the events occur at the stronger quartz–
feldspar interfaces and within the feldspar, respectively. Finally, the
post-peak behaviour is characterized by a sharp increase in the AE
count (stages h and i), which leads to the sudden loss of sample
strength that is typical of brittle failure in rocks. The corresponding
fracture pattern (Fig. 12 f) is characterized by the coalescence of
vertically aligned cracks into a macroscopic throughgoing fracture
plane that extends from the bottom right corner to the top of the
sample and by boundary-parallel extensional fractures in the sam-
ple left side. A sensible increase of quartz–feldspar intergranular
(35 per cent on average) and intragranular (8 per cent on average)
failures were recorded in stages h and i. Beyond δa = 0.4 mm, no
meaningful AE information could be extracted from the model.
Due to the lack of lateral confinement and the rock brittle be-
haviour, the recorded AE is heavily influenced by the kinetic energy
associated with the sample fragmentation (e.g. high-speed lateral
ejection of detached rock spalls). This kinetic energy is clearly
non-representative of the actual acoustic activity.

5.3 Frequency–magnitude distribution of AE

The AE amplitude distribution during fracturing experiments has
been shown to obey the Gutenberg–Richter relationship (Richter
1958) observed for crustal earthquakes (Mogi 1962; Scholz 1968a).
Based on this relationship, the distribution of AE size can be ex-
pressed by a power law:

N (> A) = a A−b, (26)

where A is the maximum amplitude of AE, N is the number of
events with amplitude greater than A and a and b are constants. In
logarithmic coordinates, this relationship becomes linear.

log N (> M) = a − bM, (27)

where M = log A is the AE magnitude and the exponent b represents
the scaling of AE magnitude distribution. The evolution of b value
has been studied to diagnose the fracture development stage during
laboratory testing of rock samples (e.g. Lockner et al. 1991) and
in non-destructive testing of structures (e.g. Carpinteri & Bocca
1991). In earthquake seismology, the b value analysis has been
used as an earthquake forecasting tool (e.g. Mogi 1967). In this
study, the evolution of b value during the UCS test simulation was
analysed with reference to the nine axial consecutive displacement
windows (stages a to i) shown in Fig. 11. Event magnitudes were
calculated from the kinetic energy of the AE sources using eqs (18)
and (19). Since in actual AE monitoring the size of AE recorded
is limited by the resolution, synthetic AE events with magnitude
smaller than −9.0 were excluded from the calculation.

The frequency–magnitude distributions (Fig. 14) show a good
linear behaviour from stages a to f, corresponding to the linear and
non-linear pre-peak portions of the stress-displacement curve. In
the peak and post-peak intervals (stages g to i), a marked increase
in the mean event magnitude and number of events is accompanied
by a loss of linearity in the distributions, which tend to exhibit a
large magnitude cut-off indicative of the presence of a finite-size
effect. In other words, when the applied stress, σ , is <97 per cent
of the failure stress (up to stage g), the AE population is relatively
small and the distribution is fully linear over the entire range of
magnitude. For higher applied stresses and in the post-peak region,
a polynomial fit would provide a better correlation between event
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Figure 12. (a) Spatial distribution of minerals in the UCS sample. Feldspar, quartz and biotite are indicated in grey, blue and green, respectively. (b–f)
Cumulative spatial distribution of broken crack elements at increasing platen displacement values, δa, during the UCS test simulation: (b) δa = 0.25 mm (stages
a and b), (c) δa = 0.30 mm (stages a to d), (d) δa = 0.35 mm (stages a to f ), (e) δa = 0.375 mm (stages a to h), (f) δa = 0.425 mm (stages a to i). Mode I (i.e.
tensile) and mode II (i.e. shear) failures are indicated in orange and blue, respectively. A transition from diffuse-like tensile-dominated cracking to macroscopic
spalling is captured as the sample is compressed.

Figure 13. Relative frequency of failure types during the UCS test simu-
lation. Intergranular failures correspond to the breakage of crack elements
bonding together triangular elements representing different mineral phases,
whereas intragranular failures correspond to the breakage of crack elements
within the same mineral.

magnitude and frequency. Qualitatively, a similar loss of linearity for
increasing applied stress was observed by Rao & Lakshmi (2005)
during laboratory uniaxial compression tests on Godhra Granite.

The seismic b values during the UCS simulation, ranging between
0.76 and 1.80 (Fig. 15), are in good agreement with published ex-
perimental values for granitic rocks ranging between 1.1 and 2.4
(e.g. Lockner et al. 1991; Lockner 1993). The numerical results in-
dicate two sharp drops in b value during the fracture process of the
rock sample. The first drop occurs in the pre-peak region at about
75 per cent of the failure stress (stage b) and is characterized by a
decrease from 1.80 to 0.99. As further discussed in Section 5.4, this
unexpected variation is caused by few larger magnitude events clus-
tering close to the bottom left corner of the sample which produce an
increase in the share of large events for stage b. This localization of
failure, which can be attributed to the particular spatial distribution
of material properties, contributes to the non-linear behaviour of
the sample’s lateral displacement while does not have any sensible
effect on its axial deformation response. The second decrease in the
b value begins at 97 per cent of the failure stress (stage g), with b
dropping from 1.59 to 1.08, and continues in the immediate post-

peak. This variation of b, clearly associated with the macroscopic
rupture of the sample, is in agreement with several experimental
findings (Scholz 1968a; Cai et al. 1988; Main & Meredith 1989;
Meredith et al. 1990; Lockner et al. 1991; Amitrano 2003), which
indicate a systematic decrease in b with increasing stress during
deformation of intact rock samples. As depicted in Fig. 12, the b
value decrease in correspondence to the maximum stress marks the
transition from diffuse crack nucleation to crack coalescence in a
major fracture plane.

5.4 Spatial clustering of AE

The location of AE sources has been widely used to study the crack
redistribution during the rock failure process and, consequently, to
obtain information on the fracture mechanisms. In this work, the
process of spatial clustering of AE source locations, depicted in
Fig. 16, was quantitatively analysed using the correlation integral
(Hirata et al. 1987):

C(R) = 2NR(r < R)

N (N − 1)
, (28)

where NR(r < R) is the number of AE source pairs separated by
a distance r shorter than R, and N is the total number of sources
analysed. If the source distribution has a fractal structure, the cor-
relation integral C(R) is proportional to RD, where D is the fractal
dimension of the distribution

C(R) ∼ RD . (29)

In two dimensions, D = 2 indicates complete randomness in the
source location distribution, while lower values suggest the presence
of clustering. However, note that D does not carry any information
about the shape of the spatial distribution: for example, D = 1.0
can refer to either a distribution of aligned sources or to a strongly
clustered distribution around a point. Hence, to obtain information
on the characteristics of the localization, the aforementioned fractal
analysis must be accompanied with a visual inspection of the actual
source pattern.

For distance R less than 50 mm, which corresponds to the width
of the sample, the plots of C(R) against R (Fig. 17) follow a good
linear trend, indicating the fractal structure of AE source location
distribution. Event spatial clustering that can be observed in Fig. 16
for stages b, g, h and i, manifests itself in the form of a decrease
of fractal dimension to values 1.1 ≤ D ≤ 1.4 (Fig. 17). The diffuse
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Figure 14. Frequency–magnitude plots for each displacement interval (stages a to i). Only events with magnitude Me ≥ −9.0 were considered. The exponent
b was calculated for the linear part of each distribution together with the coefficient of determination, R2, of the linear regression. Frequency–magnitude plots
display a power-law distribution for axial displacement values less than the value at peak (stages a to f ). In the peak and post-peak stages, the distributions lose
linearity and a finite-size effect can be noted. The b value for stage i was not calculated. For stage b, an additional analysis was carried by excluding from the
distribution the event cluster triggered by the bottom left corner of the sample (see Section 5.6).

Figure 15. Variation of b value during the UCS test simulation. Drops in b
value are associated with clustering of higher magnitude events due to either
a localized effect (stage b) or to crack coalescence in a macroscopic rupture
plane (stages g to i). For stage b, b∗ = 2.1 was calculated by excluding from
the distribution the cluster of events by the bottom left corner of the sample
(see Section 5.6).

character of the damage pattern characterizing the other stages (a,
c to f ) is reflected in 1.4 ≤ D ≤ 1.8. Due to the bidimensionality
of the FEM/DEM model, the absolute values of fractal dimension
could not be directly compared to experimental values, which vary
in three dimensions between 0 and 3. Nevertheless, the simulated
reduction of D before and after localization is in agreement with the
laboratory results reported by Lockner (1993) and Shah & Labuz
(1995) for compression tests on Westerly Granite and Charcoal
Granite, respectively, and with other numerical simulations (e.g.
Amitrano et al. 1999).

Finally, a comparison between the evolution of b value (Fig. 15)
and fractal dimension D (Fig. 18) clearly shows a decrease of b value
contemporary to the spatial localization of AE events, represented
by a decrease of D, as observed by Lockner (1993). Higher b values
result from low energy emission due to new crack formation and
slow crack growth (i.e. diffuse damage), while lower b values are due
to crack coalescence resulting in faster fracture growth accompanied
by high energy emission.

5.5 Time evolution of AE rate

The stochastic self-similarity of the simulated microfracturing
process was verified for the frequency–magnitude distribution
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Figure 16. AE source locations and associated magnitude for stages a to i of the simulated UCS failure process. The colour bar indicates the event seismic
magnitude, Me, calculated from the kinetic energy of the sources using the technique illustrated in Section 4.2. Several events, with magnitude comprised
between −8.5 and −7.5, cluster by the sample bottom left corner during stage b (indicated by an arrow), causing a drop in the correspondent b value and fractal
dimension D (see Section 5.6). The macrorupture of the sample (stages g to i) is accompanied by the localization of high-energy events close to the sample
lateral free surfaces in the form of spalls, as highlighted also by the fracture pattern depicted in Fig. 12(f).

Figure 17. Correlation integral, C(R), versus source distance, R, for stages
b, e and h of the simulated UCS stress-displacement curve (Fig. 11). A linear
regression is applied to the linear descending branch of each distribution
(R < 50 mm) with slope equal to the fractal dimension D. The coefficient of
determination, R2, is also indicated.

(Section 5.3) and spatial distribution of AE sources (Section 5.4).
As described earlier, this self-similarity manifests itself as the power
laws expressed by eqs (26) and (29) in the magnitude and spatial
domain, respectively. Similarly, it has been shown that also the rate
of AE during rock fracture experiments follows a power-law evolu-
tion in the time domain (e.g. Scholz 1968b; Hirata 1987). This phe-
nomenon is typically described by the Omori’s law, an experimental
relationship first introduced to characterize the rate of occurrence

Figure 18. Variation of fractal dimension D of the source location distri-
bution during the UCS test simulation. Decrease of D value for stage b is
caused by the local clustering of events indicated by the arrow in Fig. 16(b),
whereas the decrease occurring in correspondence of the peak stress (stages
g to i) is due to crack coalescence into macroscopic fractures. For stage
b, D∗ = 1.45 was calculated by excluding from the analysis the cluster of
events by the bottom left corner of the sample (see Section 5.6).

of earthquake aftershocks (Omori 1894). In its generalized form,
the Omori’s law is expressed as (Utsu 1962)

dN

dt
= K

(c + t)p
, (30)

where dN/dt is the aftershock rate, t is the time after the main
shock and K, c and p are empirical fitting parameters. In the case
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of foreshocks preceding the main rupture, t represents the reverse
time from the main shock. In this numerical study, the temporal
evolution of the simulated AE triggering was therefore studied with
reference to the empirical description provided by eq. (30). As
described in the following, both aftershocks and foreshocks were
initially considered.

During laboratory experiments, a hyperbolic decay of the mi-
crofracturing activity with time is commonly recorded after the
brittle fracture of rock sample with Omori’s exponent p values
typically ranging between 0.8 and 2.3 (Hirata 1987). This creep
process produced by time-dependent fracturing mechanisms can be
followed by AE monitoring provided that the rock sample remains
intact (Scholz 1968b). For example, manual unloading at the onset
of dynamic fracture can be performed to save the sample from ex-
cessive damage (Lei et al. 2004). In the FEM/DEM simulation, the
analysis of aftershock sequences was heavily compromised by the
model boundary conditions as well as the brittle behaviour exhib-
ited by the sample under unconfined compression. Since the sample
was loaded by means of platens moving at steady speed, a constant
strain rate was applied for the entire duration of the simulation.
Following the unstable rupture of the sample, this monotonic load-
ing condition greatly enhanced the fragmentation of the rock, thus
causing a dramatic increase of breakages in the post-peak stages of
the simulation (Fig. 11). That is, the simulation was stopped before
any decay in the event rate could be observed.

Conversely, acoustic events triggered before the macroscopic fail-
ure of the sample could be successfully analysed. The evolution of
AE rate as function of the time prior to the main rupture is reported
in the logarithmic scale plot of Fig. 19. For time values t greater
than 0.9 ms (i.e. stage a in Fig. 11), very low activity is recorded
and the evolution is non-linear. However, as more stress is applied,
more events are triggered and a slow growth of microfracturing is
followed by a rapid acceleration of AE rate, for which Omori’s law
provides a good fit. Due to the above-mentioned difficulties, a clear
identification of the time, tM, corresponding to the main shock was
not possible. Therefore, the regression analysis using Omori’s law
was repeated for three increasing tM values: p values equal to 0.38,

Figure 19. Logarithmic scale plot of the rate of acoustic events in the UCS
test simulation as function of the time before the main rupture. Omori’s
exponent values, p (eq. 30), equal to 0.38, 0.70 and 1.12 were calculated
by assuming the main rupture to occurred at axial displacement values, δa,
of 0.3625, 0.375 and 0.400 mm, respectively. These threshold displacement
values to the endpoints of stages g, h and i, respectively (Fig. 11).

0.70 and 1.12 were obtained for tM equal to 1.45, 1.50 and 1.60 ms,
respectively. Given a platen velocity of v = 0.125 m s−1, these tM

values correspond to axial displacements, δa, of 0.3625, 0.375 and
0.400 mm, which in turn correspond to the endpoints of stages g, h
and i, respectively. For comparison, p values ranging between 0.8
and 2.1 have been reported for foreshocks during actual laboratory
tests on rock (e.g. Ojala et al. 2004; Schubnel et al. 2007).

5.6 Analysis of b value anomaly

As described in Section 5.3, an anomaly of b value was recorded
during stage b (0.225 ≤ δa ≤ 0.250 mm) of the UCS test simulation.
The b value, calculated from the frequency–magnitude distribution
of all events in the given displacement window, was equal to 0.99,
which represented a 40 per cent reduction with respect to the average
value in the pre-peak stages of the simulation (b = 1.67, Fig. 15).
Moreover, the drop in b value was also accompanied by a reduction
in the associated fractal dimension, D, of the hypocentre distribution
(Fig. 18).

For tectonic earthquakes, correlations between low b values and
regions of increased fault strength have been observed (e.g. Wiemer
& Wyss 1997). In the laboratory, temporal fluctuations of AE statis-
tics have been related to the heterogeneous distribution of grain
size and strength within the rock microstructure (Lei et al. 2004).
For example, Goebel et al. (2012) showed a clear connection be-
tween the spatiotemporal distribution of microseismicity and struc-
tural heterogeneities of fracture surfaces during stick-slip labora-
tory experiments on notched samples of Westerly Granite. More
specifically, geometric asperities identified through CT scan images
corresponded well with regions of low local b value.

In the FEM/DEM simulation, a region of high event density
was located during stage b in proximity to the bottom left corner
of the sample (Fig. 16b). The effect of this cluster of events on
the simulated AE statistics, namely b value and fractal dimension
D, was assessed by excluding these events from the regression
analysis based on eqs (27) and (29). The modified distributions of
event magnitude (Fig. 14b) and spatial correlation integral were
characterized by b∗ = 2.1 and D∗ = 1.45, respectively. As can be
observed from Figs 15 and 18, these values tend to follow the same
trend simulated for the other pre-peak stages, thus confirming the
influence of the event sequence in causing the simulated anomaly.

The local distribution of mineral phases was then investigated in
an attempt to provide a mechanical interpretation for the simulated
phenomenon (Fig. 20a). The acoustic events correspond to the fail-
ure of a series of crack elements approximately aligned at about
67◦ from the horizontal. In agreement with the analysis reported in
Section 5.2, breakages are mainly restricted to the weaker interfaces
between biotite and feldspar in the form of mode I fracturing. The vi-
sual inspection of the property distribution indicates the presence of
two quartz–feldspar clumps located on the top left and bottom right
side of the rupture plane. These two mineral clumps, characterized
by higher stiffness and strength values (Table 5), experience a con-
centration of maximum principal stress, σ 1 (Fig. 20b). As discussed
in detail by Mahabadi (2012), breakage of weaker mineral interfaces
is due to higher localized tensile stresses arising from elastic mis-
match of the three rock minerals. Based on these observations, it
is likely that the simulated higher activity is a direct consequence
of the build-up of elastic strain energy in the two clumps which is
released as acoustic energy upon failure of the weaker interfaces.
Therefore, these numerical results tend to agree with the experi-
mental evidence mentioned earlier which highlights decreasing b
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Figure 20. A zoomed-in view of the squared region of Fig. 16(b) showing
(a) the distribution of mineral phases and failed crack elements during stage
b of the UCS test simulation and (b) the local distribution of maximum
principal stress, σ 1, before the rupture sequence at t = 0.68 ms (i.e. δa = 0.17
mm). The approximate alignment direction of the sequence of events is
indicated by a dashed line. These events tend to be located at the interface of
two clumps of stiffer, stronger material (i.e. feldspar and quartz) contoured
by a red line. Note the heterogeneous stress distribution with two major
compressive stress concentrations.

values due to fracture growth around the boundaries of asperities.
Nevertheless, further numerical investigation is required to confirm
the validity of the postulated mechanism. In this context, a more
realistic numerical representation of the rock microstructure, for in-
stance directly derived from μCT images (Mahabadi et al. 2012b),
should be adopted.

6 S U M M A RY

Monitoring of acoustic activity has been used to characterize the
rock failure process by providing unique information regarding the
amount of internal damage, the spatial distribution of microfractures
and the magnitude distribution of fracturing events. Therefore, the
ability to simulate acoustic activity presents an important tool in the
validation of numerical models that aim at quantitatively capturing
the deformation and failure process of brittle rocks. Furthermore,
the relationship between the simulated seismicity and model pa-
rameters (e.g. material properties, loading conditions, degree of
heterogeneity) can be numerically investigated. While several mod-
els have been developed to date for this purpose, only a limited
number explicitly consider acoustic waves, the majority adopting a
static approach, whereby the elastic strain energy, dissipated by an
elastoplastic constitutive law, is considered as an equivalent for the
radiated seismic energy.

In this work, a new approach to simulate the acoustic activ-
ity of brittle failing rocks was presented based on the combined
FEM/DEM. Two methods were considered to obtain quantitative
information on the acoustic activity: (i) the seismic analysis of
waveforms recorded at a distance from the sources and (ii) moni-
toring of internal variables (e.g. relative displacements and kinetic
energy) in proximity to propagating fractures.

Fourier analysis of synthetic seismograms highlighted frequency
contents ranging between 8 and 20 kHz. As expected, the amount

of applied numerical damping significantly reduced the amplitudes
of AE signals recorded at a distance from the source. Low rup-
ture speed values, direct consequence of the adopted mesoscopic
model of the fracturing process, resulted in a quasi-dynamic AE
behaviour characterized by low-frequency content source processes
in the FEM/DEM simulations. Although seismic energy is emitted
upon failure, the observed low rupture speeds imply that most re-
leased energy is dissipated as fracture energy within the FPZ. Fur-
thermore, the seismic analysis of synthetic seismograms suffered
from the inability to record temporally distinct events as the event
count rate increases, which constrained its application to special
fracturing conditions (e.g. wing crack propagation). Nevertheless,
event relocation based on traveltime inversion showed good agree-
ment with the internally recorded AE locations. Also, the seismic
energy estimated at the receivers via integration of wave amplitude
scaled linearly with the kinetic energy of cracks monitored at the
source.

Taking advantage of the discrete material representation of
FEM/DEM, an alternative algorithm was implemented to obtain
seismic information, including source location, mode of fracture,
initiation time and event energy, based on internal monitoring of
node motions. As mentioned earlier, the event energy, estimated
based on the crack kinetic energy, was related to the energy car-
ried by the radiated stress waves and recorded at selected locations
by the model boundaries. The main limitation of this technique
is represented, at the moment, by its inability to record the en-
ergy radiated by slips along pre-existing crack surfaces that do not
involve intact material breakage. Finally, the validity of the afore-
mentioned approach was demonstrated by simulating the AE of
an unconfined compression test on Stanstead Granite. The model
reproduced the macroscopic mechanical response of the sample
(e.g. elastic behaviour, overall strength, post-peak brittle failure), as
observed in the laboratory. Simulated event magnitudes tended to
display a power-law distribution, with b values in agreement with
those reported in the literature for granitic rocks. Also, the model
showed a correlation between the decrease of b value and the tran-
sition of source location distribution from diffuse-like to strongly
clustered, as the applied stress increases and macroscopic fractures
develop through the sample. A b value anomaly was related to the
failure of weaker mineral bonds at the interface of stronger, stiffer
clumps within the numerical microstructure of the rock sample.
Furthermore, Omori’s law provided a good fit for the evolution of
AE rate as function of time before the macroscopic rupture of the
sample.

In future studies, the validated FEM/DEM-AE modelling tech-
nique will be used to obtain further insights into the microme-
chanics of rock failure with potential applications ranging from
laboratory-scale microcracking to engineering-scale processes (e.g.
underground excavations, petroleum and geothermal reservoirs) to
tectonic earthquakes. Moreover, the approach will be extended to a
3-D version of the FEM/DEM code currently under development.
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