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Summary 
The effects of the gravitational attractions of the Sun and Moon 

on the orbital elements of an Earth satellite are investigated using 
Lagrange’s planetary equations. Expressions are obtained for the 
change in the elements during one revolution of the satellite and for 
the rates of change of these elements. Corresponding expressions are 
obtained for the effects of solar radiation pressure, including the effect 
of the Earth’s shadow. 

I. Introduction 
The effects of the gravitational attractions of the Sun and Moon on the orbits 

of artificial Earth satellites are now important for two reasons. Firstly, they must 
be included in the analysis when the harmonics in the Earth’s gravitational poten- 
tial are evaluated from satellite observations (King-Hele 1961), and, secondly, 
they are important for satellites which travel out to several Earth radii, e.g. Explorer 
6 or various proposed communication satellites. The force due to solar radiation 
is greater than air drag for all satellites above about I 000 km; the effects of solar 
radiation pressure, however, are mainly important for balloon-type satellites, 
e.g. Echo. 

The effect of a disturbing body on the Moon’s orbit has been studied for 
many years, but the resulting lunar theory is not applicable to artificial satellites. 
Luni-solar perturbations of the orbits of artificial satellites have been studied 
recently in several papers: all these papers are, however, subject to certain 
limitations. 

The first paper, by Spitzer (1950), uses only the first terms of the Hill-Brown 
lunar theory, so that the results are limited by the assumptions of small eccen- 
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272 G. E. Cook 

tricity and small inclination of the orbit of the disturbed body to the orbit of the 
disturbing body, which were used in the development of that theory. 

In the second paper, Kozai (1959) writes down Lagrange’s planetary equations 
and the disturbing function due to the Sun or Moon, including both secular and 
long period terms, but he only gives explicit expressions for the secular terms. 

In the third paper, Blitzer (1959) ignores the specialized techniques of celestial 
mechanics and obtains estimates of the perturbations by the methods of classical 
mechanics. Again, only secular terms are included. 

In  the fourth paper, Moe (1960) also uses Lagrange’s planetary equations, but 
chooses a co-ordinate system in which one axis is along the orbital angular momen- 
tum vector of the disturbing body. For a near Earth satellite, however, the most 
useful set of axes has one axis coincident with the Earth’s axis. 

Geyling (1960) writes down the equations of motion in terms of the displace- 
ment components relative to the unperturbed elliptic orbit, but only solves them 
for a circular orbit. 

Papers by Musen (1960a) and Upton, Bailie & Musen (1959) also discuss luni- 
solar perturbations although they do not give general results, but only the effects 
on particular satellites. They do, however, point out the possibility of resonance 
effects. 

I n  this paper, perturbations due solely to a third body are determined from 
Lagrange’s planetary equations by integrating over one revolution of the satellite. 
The rates of change of the orbital elements averaged over one revolution are then 
written down. All first-order terms, both secular and long-period (greater than the 
period of revolution of the satellite), are retained in the analysis. There is no 
limitation on the eccentricity, but, owing to the neglect of high-order terms in 
r / ~ d ,  where T and rd are the radial distances from the Earth of the satellite and dis- 
turbing body respectively, the theory is limited to satellites whose semi-major 
axis does not exceed one tenth of the Moon’s distance from the Earth. 

Corresponding expressions are obtained for the changes in the orbital elements 
due to solar radiation pressure. When the effect of the Earth’s shadow is neglected, 
the results reduce to those given by Musen (1960b). 

2. Lagrange’s planetary equations 
The notation is illustrated in Figure I ,  which shows the projection of the 

satellite orbit on the unit sphere. The components of the perturbing force per 
unit mass are denoted by S, T and W, where S is along the radius vector from the 
Earth’s centre, T is perpendicular to S and in the osculating plane of the orbit, 
and W is normal to the osculating plane. The osculating plane is defined as the 
plane containing the satellite’s velocity vector and passing through the Earth’s 
centre. Its position is defined by the right ascension of the ascending node s2 and 
by the inclination i, defined as the angle (0 < i < T) between the eastward direc- 
tion at the equator and the osculating plane at the ascending node N .  The position 
of the osculating ellipse in the orbital plane is defined by the argument of perigee, 
w. The size of the orbit is specified by the semi-major axis, a, and the shape by the 
eccentricity, e. The position of the satellite in the ellipse is defined by the angle u, 
as measured from the ascending node, and by its radial distance Y from the Earth’s 
centre. 

Lagrange’s planetary equations express the rate of change of the osculating 
elements in terms of the components of the perturbing force. These equations 
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273 Luni-solar perturbations of the orbit of an Earth satellite 

are (Tisserand 1889, p. 433): 

a 
S e sin O+-(I 

n( I - e2)k T 
a =  

(I  - e2)+ c=---- 
nu 

[ S  sin O+ T(cos O+cos E)] (2) 

di Wr cos u 

dt n&( I - e2)* 
_ -  - 

Wr sin u 
na2( I - e2)tsin i 

h =  

(I - e2)3- Y eY 
ci, = -[ - s cos d+ ( I  + -------IT sin 8- ___ w cot i sin u] ( 5 )  nae a( I - e2) a( I - e2) 

where (Tisserand 1889, p. 462) 

I 

Y n2a4( I - e2) ’ 
Wr3 cot i sin u 

- =  I -  (7)  

n is the mean angular motion of the satellite, 8 is the true anomaly and E is the 
eccentric anomaly. 

\ 

FIG. I .-Projection of satellite orbit on unit sphere, showing notation. 

Two simplifications in these equations are possible, since the main changes in 
s1 and w are those due to the Earth’s gravitational field (King-Hele 1958). Firstly, 
since dQ/du is of the order of 10-3 cos i, equation (7) can be written as 

ds1 
cos i = I + O(10-3). y = l + d u  
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274 G. E. Cook 
Secondly, since u = 8 +  w ,  it is possible to write 

d o  du 
do do 

- I + - =  I + O  _ -  (9) 

as dw/d8 is of the order of 1 0 - ~ ( 5  cos2 i- I ) .  These simplifications are still valid 
when hi-solar perturbations are included, as these are O( 10-5) or less in the range 
of validity of the present theory. 

Using equations (6) ,  (8) and (9), the derivatives in (I)  to ( 5 )  may be replaced 
by derivatives with respect to 8: 

da a 
_ -  - 2r2 [Se sin O +  - ( I -e  
dB n2a2( I - e2) r 
de r2 
- = -[S sin 8 + T(cos 8 + cos E)]  
dB n2a3 

di  Wr3 cos u 

dB n2a4( I - e2) 
_ -  - 

Wr3 sin u 

n2a4( I - e2) sin i 
- d Q  

do 
-- 

dw r2 
do n2a3e 
-- 

er 
a( I - e2) 

_ _ _ _  w cot i sin u ] .  (14) 

The changes in the orbital elements are obtained by integrating equations 
(10) to (14) over one revolution of the satellite, assuming that the orbital elements 
remain constant during the time of integration and that the radial distance of the 
satellite is the same as for an unperturbed orbit. The components of the disturb- 
ing force are derived in Section 3.1 and the integration is performed in Section 3.2. 
The effect of solar radiation pressure is dealt with in Section 4. 

The period of revolution of the satellite, which is the same as for an un- 
perturbed orbit, is 

27ra* 27r 

(GMe)' Or n' 
where G is the constant of gravitation and Me is the mass of the Earth. 

3. Perturbations due to the gravitational attraction of a third body 
3. I .  The disturbing force due to a third body 

Let 0 be the origin of a co-ordinate system OXYZ such that OX is the line 
from which Q is measured and 02 is directed northwards along the Earth's axis, 
as shown in Figure I ; let the co-ordinates of the satellite be (x, y, Z) and those of 
the disturbing body be ( X d ,  y d ,  X d ) .  Then the disturbing function R is given by 
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Luni-soLar perturbations of the orbit of an Earth satellite 275 

where Ma is the mass of the disturbing body, which is at a distance yd from the 
Earth's centre. A denotes the distance between the satellite and the disturbing 
body and is given by 

A' = ( X - X d ) 2 + 0 7 - y d ) 2 + ( Z - z d ) 2 .  (17) 

Differentiation of the disturbing function gives the components of the disturbing 
force along the axes OX, 0 Y and 02. These are : 

Let the lines O.$, 07 and 05 of Figure I, which are parallel to S, T and W, 
have direction cosines (ZI, ml, nl), (12, m2, n2) and (13, m3, n3) respectively with 
reference to the axes OX,  O Y  and 02. In terms of the satellite's co-ordinates 
these are: 

(19) 

11 = cos R cos u-sin Q sin u cos i 
ml= sin R cos u+cos R sin u cos i 
nl = sin u sin i 

-12  = -cos R sin u-sin R cos u cos i 
m2= -sin R sin u+cos $2 cos u cos i 
n2 = cos u sin i 
13 = sin !,2 sin i 
m3= - cos R sin i 

. n3 = cos i. 

If the orbital elements of the disturbing body, denoted by the suffix d, are defined 
in the same way as those of the satellite, its co-ordinates are given by 

xd = rd(C0S a d  cos ud- sin i& sin ud cos i d )  

Zd = rd sin Ud sin i d .  

y d  = rd(sin a d  cos ud + cos a d  sin ud cos i d )  ) (22) 

Denoting the angle between the radius vector to the satellite and the disturbing 
body by (6, we can write 

so that 
I I Y 

A3 Yd3 r d  

Using (19) and (22), we obtain 
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A = cos(Q - a d )  cos U d  + cos i d  sin U d  sin( i2 - a d )  

B = cos i[ - sin(i2 - a d )  cos u d  + cos i d  sin U d  cos(Q - a d ) ]  

+sin i sin i d  sin Ud.  

and 

Substitution of equation (24) into (IS) gives 

The components of the perturbing force, as defined in Section 2, are given in 
terms of the disturbing function by 

aR 8R aR 
S = Zi- +ml- +nl- ax ay az 

aR 8R aR 
T = 12- +mz- +n2- ax ay ax 

aR aR aR 
ax ay ax W = 13- + m- + n3-. 

Substituting (27) into (28) gives 

]I 
3 y  S = -Kr 1 + 3  --cos$ cos++--(1-~cos2$)cos~ [ ( r i  ) 2 rd 

T = 3Kr(& + m 2 m d  + ~ ~ 2 n d )  

1 I T  
W = 3Kr( ZZld + m g m d  + n 3 n d )  cos 4 - - -(I - 5 cos2$) [ 2 r d  

where K = G k f d / r d 3 .  Using equations (20) and (22) gives 

I& + m2md + n z n d  = -A sin u + B cos u, 

and using equations (21) and (22) gives 

z3ld + mgmd + n 3 n d  = sin i[cos Ud sin(Q - a d )  - cos i d  sin U d  cos(i2 - n d ) ]  

= C, say. 
+ cos i sin i d  sin U d  

Substituting equations (25), (30) and (31) in (29), the components of the disturbing 
force become : 

s = - K [ ~ - $ ( A ~ + B ~ ) - ~ A B  sin 2 u - g ( ~ 2 - ~ 2 )  cos 2u 
L 

I +-(A 3r cos u + B  sin u){3 - 5  - (A cosu+Bsinu)) (32) 
2 r d  
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277 Luni-solar perturbations of the orbit an of Earth satellite 

T = 3Kr AB cos zu-$(Az-B2)sin 2u)+ 
r 

2Td 
+-(A sinu- Bcosu)(~ -5(Acosu+Bsinu)2) ] (33) 

(34) 

[ 

1 r 

2rd 
cos u + B  sin u----(I-s(Acosu+Bsinu)2} 

where the error due to the neglected terms is a factor 

The second-order terms are only needed in the expression for u. 
It is worth noting that A, B and C, defined by equations (26)  and ( 3 1 ) ,  are 

direction cosines of the radius vector to the disturbing body referred to geocentric 
axes through the ascending node of the satellite, through the apex of the orbit and 
normal to the orbit respectively. 

3.2.  Change per revolution in the orbital elements 
3.2. I. Semi-major axis 
Substituting for S and T from (32) and ( 3 3 ) ,  equation (10) becomes 

da 2Kr3 
- = ----{[-I +#(Az+Bz)+3AB sin 2u+$(Az-B2)  cos zu]e sin 8 
d8 n2a2( I - e2) 

+ 3 [ A B  cos zu -$(A2-B2) sin 2u][1  +e cos 81) (35)  

The change in the semi-major axis, ha, during one revolution of the satellite is 
obtained by substituting u = 8+ 0 in equation ( 3 5 )  and integrating over a complete 
revolution. A and B (and, in later equations, C) are considered constant during 
the integrations because the mean motion of the disturbing body is very much less 
than that of the satellite.. Hence, noting that all integrals of the form 

27l 
sin n8 

d8 are zero, we have 

2n - 

6K( I - e2)2a (e cos 8 + cos 28) 
h a  = [AB cos 2 0 -  g(A2-BZ)sin 2w] dB1 n2 

0 
so that 

to the first order. 
h a  = 0, 

3.2.2. Eccentricity 
From equations (11), (32) and (33) 

de Kr3 

d8 n2a3 
- - - - - ( [ - I+$(A~+B~)+~AB sin zu+#(A2-B2) cos 2 4  sin 8 

+ 3 [ A B  cos 2u- $(A2-B2) sin 2u] 
I + e  cos 8 
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278 G. E. Cook 
Integrating over one revolution, we find 

2n ~ 

3K( I - 4 3  

n2 
he = [AB cos zw-i(A2- BZ) sin 203 s ((1 +::o: 8)3 + 

0 

e cos 20 + + 
( I + e  cos 4 4  

cos 20 cos 8 
( I+e  cos 4 4  

I 5rKe( I - ez)a 

n2 
- _  - [AB cos 20 - +(AZ- B2) sin 2w J 

p e  ~ + e  
n2u I - e  

- - --(-)*TP, 

from (33), where the s u f i  p refers to the value at perigee. 

3.2.3. Perigee height 
The radial distance of perigee, rp,  is given by 

rp = a(I -e ) ,  

so that the change in perigee height during one revolution is 

Therefore, using (38), 
Ar, = -aAe. 

s r e  I + e  * 
Arp = -(-) n2 I - e  Tp. 

3.2.4. Right ascension of ascending node 
Substituting equation (34) for W in (13)  gives 

3K+C 
n2d( I - e2)sin t 

- ------ dQ -- 
d8 

.[A cos u + B sin ulsin u. 

Integrating over one revohtion, 

277 
A sin 2w cos 28 + B( I - cos 2w cos-28) 

d8 
2712 sin i ( I  +ec0~8)4 

A i l  = 

0 

37rKC 
2n2( I - e2)* sin i - - [5Ae2sin2o+B(z+3e2-ge2coszw)]. 

3.2.5. Orbital inclination 
From equations (15) and (34) 

di 3K+C _ -  - 
d8 n W ( 1  -e2) 

[A cos u + B sin ulcos u. 

(43) 

(44) 
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Lunisolar perturbations of the orbit of an Earth satellite 279 
Integrating, 

2n 
A( I + cos 2w cos 20) + B cos 26 sin 20 

d8 
3K(1-e2)3c 2122 s ( I  + e cos 694 

Ai = 

0 

37rKC 
2n2( I - e2)t 

- - [ A ( 2 + 3 e 2 + 5 e 2 ~ 0 ~ 2 ~ ) + 5 B e 2 s i n 2 w ] .  (45 ) 

3.2.6. Argument of perigee 
Combining (13) and ( 1 4 ) ~  substituting S and T from (32) and (33) we obtain 

dw dQ 
- + -cosi = 
dB d8 

Integrating, 

Aw+AQcosi = 

2n 

- 
n2e (I + e cos 0)3 

0 

For moderately small eccentricities, second-order terms become important for the 
argument of perigee. If the second-order terms of equations (32) and (33) are in- 
cluded in (46), we obtain the term to be added to (47). It is 

IprKa(A cos w + B sin w )  

zrdn2e 
(I  -i(A2+B2)}. 

3.3 Rates of change of the or&tal elments 
The rate of change of any orbital element averaged over a complete revolution 

of the satellite is readily obtained from the results of the previous section by utiliz- 
ing the fact that At, the increment of time during one revolution, is equal to the 
period of revolution. 

Using equation (IS)  in conjunction with the results of the previous section, the 
rates of change of the elements can be written as 

li = o+ (48) 
I5 K e' = - -+I -e2)*[ABcos2w-&42-B2)sinzw]+O(I') 
2 n  

15 K ' 

2 n  
ip = - - ae( I - e2)+ [AB cos 2w -&42- @)sin 203 + O(I'a) 

(49) 
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280 G. E. Cook 

~{ABsin 2w ++(A2- B2) cos 2w} - I + B2) 2 n  

where 

3.4. Resonance relations 
The possible existence of resonance is well known in planetary theory (Brown 

& Shook 1933, p. 248). When resonance occurs, the eccentricity is the most im- 
portant orbital element since any change in it affects the perigee radius, which 
influences the satellite's lifetime. After substituting for A and B and performing 
considerable trigonometric manipulation, equation (49) becomes 

[sin4+i{cos4+id sin z(j? - ud - w )  + sin4 +id sin z(j? + ud - w )  ++ sinzid sin 2(p - w)}  - 

- ~0~4$i{cos4+i~s inz(~-ud+ w)+sin4$i&n2(j?++d+ w)++sin2idsin2(/?+ w ) }  

+ cos2~isinisinid(cosidsin(j?+ 2w)+ ~0~2~idsin(2ud-j?- 2w)+sin2+id x 

x sin(/3+2ud+2w)}+sin2+isinisinid x 

x (cosidsin(/3-2w)+cos2+ia sin(zud-/3+ 2w)+sin2+id sin(j?+2ud-m)} 

- b sinZisinZid(sin 2( o + ud)  + sin 2( w - ud)) 

-&sin2i{1 -$sin2id}sin2w], ( 5 5 )  

where j? = Q - Q d .  The fifteen possible cases when resonance can occur are: 

I /l+Zid+C = o  

2Zid+/l+20 = o  

/l+c = o  

/I+ 2c = o  

and c = o  = " I  c + Ud 

To determine whether resonance occurs, all perturbing influences must be included 
in these relations, although the Earth's oblateness will normally be the main one. 
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Luni-solar perturbations of the orbit of an Earth satellite 281 
3.5. Circular orbits 

A circular orbit undergoes no change in size or shape to the order of accuracy 
considered here, and Q and i are the only elements of interest. Equations (51) 
and (52) become 

. 3 K B C  
Q = 

2 n sini 

and 
di 3 K 
- = --AC. 
dt 2 n 

(57) 

4. Perturbations due to solar radiation pressure 
4. I .  Force qn a satellite due to solar radiation 

As the Barth‘s distance from the Sun is large compared with the size of the 
orbit, the force produced on a satellite by solar radiation pressure can be assumed 
independent of its distance from the Sun. Also, in a first approximation, it is 
possible to neglect the effect of the Earth’s albedo. For a non-spherical satellite 
the magnitude of the force will depend on the satellite’s orientation, but for the 
purpose of this analysis we assume that it is possible to use a suitable average value, 
F per unit mass, which acts while the satellite is in sunlight. 

Using the notation of Section 3 the force can be resolved into components: 

S = F(Acosu+Bsinu) 
T = F(-Asinu+Bcosu) 
W =  FC. 

It should be noted that the sign of F is always negative. 

4.2. Change per revolution in the orbital elements 

4.2.1. Semi-major axis 
Substituting for S and T from equations (59) and (60), equation (10) becomes 

da 
d0 n2 I .  2F( I - e2) Asin u- Bcosu+ e(Asin w - B cos w )  

[ ( I  + e cos 0)z 
_ -  - - 

If the values of true anomaly when the satellite departs from and enters the Earth’s 
shadow are denoted by 00 and OC respectively, the change in a during one revolu- 
tion is given by 

2F( I -e2) 
n2 

(A  sin w - B cos w)(e+ cos 0) + (A cos w + Bsin w) sin 0 
( I  + e cos 0)2 

do. i” Aa = - 
00 

Evaluating the integral and using the equation of the orbit, we obtain 

Aa = - z[ ( A  sin w - B cos w)(rc sin 0, - rosin 00) 
n2a 

+(Acosw+Bsinw) (“3. - 
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282 G. E Cook 

The result may be written in terms of the components of the perturbing force at 
perigee, denoted by the su& p ,  evaluated as if perigee is in sunlight: 

2 
Aa = -[(rc sin 8, - rosin 60)T, + a(cos Ec - cos E0)Sp]. (63) n2a 

Alternatively, if the distance travelled by the satellite, while in sunlight, in the 
direction of the Sun is h, 

2Fh 
n2a 

Aa = -. 

4.2.2. Eccentricity 
From equations (11), (59) and (60), we have 

de -- - - [ ( A  sin w - B cos w) + ( A  sin u- B cos u) 
d6 CL 

where p = 1 2 2 ~ 3 .  Integrating, 

I I a 
2e 2e 

- -(rc2 sin 8, - ro2 sin 80) + -(I - 4e2)(rc sin 8, - ro sin 80) 

4.2.3. Perigee hezght 
The change in perigee radius can be obtained from 

Ar, = ( I  - e )  Aa-aAe. (66) 

4.2.4. Right ascension of ascending node 
Using equation (13) and noting that W is constant round the orbit, we have 

Wa2( I - e2)2 sin(8 + w) dQ 
d8 psini ( I  +ecos0)3' 
-- - 

Integrating, 

A n  = 

r,2 sin 8, - yo2 sin 80 
2( I - e2) 

( I  + 2e2) 

2( I - e2) 
+- (arc sin 8, - aro sin 80) cos w + 

3a2e ( ( (I - e2)ttan (48,) 1 (I - e2)h tan (Beo) 
- tan-1 - tan-1 

( I  - e2)t I + e  I + e  

4.2.5. Orbital inclination 
From equation (12) 
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Luni-solar perturbations of the orbit of an Earth satellite 283 
Integrating, 

W re2 sin 8, - yo2 sin 80 (I + ze2) 
P z( I - e2) 2( I - e2)  

A i =  -([ 
- -.--bn-l{'~-~ ( I  - e2)* 

+- (are sin 8, - arg sin 80) 

3 a2e 
- tan-1 

4.2.6. Argument of perigee 
Combining equations (131, (14), (59) and (60) we obtain 

__ dw + -cosi di2 = - ~ ( ( A c o s w + ~ s i n w ) + ( d s i n u - B c o s u )  sin 8 
d8 d8 I"e I +ecos 8 

Integrating, 

A w f A Q c o s i  = 

I I a 
2e 2e 

T P  

2tLe3 

+ -(rc2 sin 8, - ro2 sin 80) - -(I + ze2)(rc sin 8, - ro sin 0,) 

+ -[e(rc2 cos 8, - ro2 cos 80) + a( I - e2)(rC - TO) ] .  

4.3. Rates of change of the orbital elements 
The rate of change of any orbital element, $, averaged over one revolution of 

the satellite is easily obtained by combining equation (IS) with the appropriate 
equation of Section 4.2. The result, which is exact if F is constant, is 

. nA# *=-. 
2r 

4.4. Results for a satellite permanently in sunlight 

above results simplify considerably : 
For a satellite permanently in sunlight the integral is taken from o to 2r and the 

a = o  

3( I - e2)k 
t =  TP 2na 
ip = - a 6  

= - 3Wesinw 
2na( I - ez)* sin i 
3 We cos w di  

dt 2na( I - e2)+ 
_ -  _ -  

(73) 

(74) 

(75) 

3( I - e2)+ 
2nae S P  h + Q c o s i  = - 
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284 G. E. Cook 

The components of the perturbing force appearing in these equations are 
obtained by substituting for A, B and C from equations (26) and (31) in equations 
(59) to (61). Writing id = E ,  i& = o and u d  = L for the Sun (see Section s), we 
obtain: 

Sp = F([cos2 $6 cos( w + Q - L) + sin2& cos(w + s1+ L)]cos2+i 

+ [ C O S ~ & C O S ( ~ -  Q+L)+sin2&cos(w- Q-L)]sin2& 

++[cos(w-L)-cos(w+L)]sin isin €1 
T p  = -F{[cos2&sin(w+ Q-L)+sin2&sin(w+ Q+L)]cos2+i 

+ [cos2&sin(w- i2+L)+sin2&sin(w- Q--L)]sin2& 

- &[sin (w + L )  - sin (w - L)] sin i sin E) 

F 
Wsinw = - -{[cos(w+Q-L)-cos(w-Q+L)] sinicos2+E 

+[cos(w+i2++)-cos(w-Q2L)]sinisin~ +e 

+[cos(w+L)-cos(w-L)] cosisine) 

2 

F 
W C O S : ~  = -{[sin(w + Q -L) -  sin(w - i2 +L)] sinicos2& 

+ [sin(w + i2 + L)  - sin(w - Q - L)] sin isin2& 

+ [sin( w + L)  - sin(w - L)] cos i sin E ) .  

2 

When the orbit is entirely in sunlight, there are six conditions for resonance, 
which are easily recognized. They are given by 

and 

These conditions are the same as six of (56). 

5. Orbital elements of the Sun and the Moon 
The orbital elements of the Sun and the Moon, with the ecliptic as reference 

plane, can be obtained from the Astronomical Ephemeris. For present purposes, 
sufficient accuracy is obtained by taking the orbits of the disturbing bodies as 
circular; Yd is then replaced by the semi-major axis, a d ,  of the disturbing body, 
since 

rd = ad{ I -!- o(ed)} (82) 

and ed,  the eccentricity of the orbit of the Sun or Moon relative to the Earth, is 
small. The position of the Sun is now defined by two elements and the position of 
the Moon by three elements. For the Sun, these are: 

the geometric mean longitude measured in the ecliptic from the 

the mean obliquity of the ecliptic. 

L, 

E 

equinox of date ; 
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For the Moon, they are: 

( the mean longitude, measured in the ecliptic from the mean equinox 
of date to the mean ascending node of the orbit, and then along the 
orbit ; 

the longitude of the mean ascending node of the lunar orbit on the 
ecliptic, measured from the mean equinox of date; 

the inclination of the lunar orbit to the ecliptic. 

a 
c( 

Two of these elements are constants : 

a = 5.145' 
E = 23.44.' 

In the notation of this paper the Sun's position is given by 

f i d  = 0, ud = L, id = E .  

The orbital plane of the moon rotates once in 18.6 years and the value of fi 
can be obtained from the relation 

51 = 178.78 - 0.05295 t deg, 

where t is measured in days from 1960 January i.0. The value of QG on January 
1.0 is given in Table I for the next ten years. If the equations of spherical 

Table I 

Longitude of ascending node of lunar 
orbit on the ecliptic 

Year 

1960 
1961 
1962 
I963 
I964 
I965 
1966 
I967 
1968 
I969 
I970 

on January 1.0, 
deg 

178.78 
159.40 
140.07 
I20 '74 
101.36 
82.03 
62.70 
43'37 
23 '99 
4.67 - 14.66 

trigonometry are applied to the triangle in Figure 2, the Moon's position is found 
to be given, in the notation of this paper, by 

cos id = cos E cos a - sin E sin u cosa  

and 

sin a sins 
sin id 

sinfid = 

sin E sinfi 
[ sin id 1. Ud = ( -51 + sin-1 
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T h e  inclination of the lunar orbit to the equator, id, varies between 18.3" and 
28.6" and Qd oscillates between + 13" and - 13". ( can be found on page 5 1  of 
the Astronomical Ephemeris. 

Using equation (82) we can write 

where, if lunar perturbations are required, m is the ratio of the mass of the Moon 
to the mass of the Earth and ii is the mean angular motion of the Moon about 
the Earth. If solar perturbations are required m is taken as unity and ii is the 
mean angular motion of the Earth about the Sun. Taking (Baker & Makemson 
1960, p. 94) m = 1/81-45 and the period of revolution of the Moon as 27'322 days, 
the value of K is 2.132 degZ/dayz for lunar perturbations. For solar perturbations, 
the value of K is 0.9714 deg2lday2. 

t 

FIG. 2.-Orbital elements of the Moon. 

Using a value of 1-95 cal/cm2 min for the solar constant (Hynek 1951, 
p. 269), the solar radiation pressure on a perfectly black surface normal to the 
incident beam is 9-48 x 10-8 lbfft2 (4-5 x 10-5 dynlcmz). The total force on a 
curved black surface is obtained by multiplying this value by the projected area of 
the surface normal to the incident radiation. For total reflexion, the force will be 
twice that for a perfect absorber. In  practice it is often difficult to decide on the 
exact value of the force, but its practical evaluation is outside the scope of this 
paper. 

6. Discussion 
To the first order, neither gravitation nor solar radiation pressure, when the 

orbit is entirely in sunlight, have any effect on the semi-major axis, so that no 
energy is imparted to the satellite. It should be noted that a circular orbit remains 
circular under the influence of the gravitational attraction of a third body, but be- 
comes elliptic under the action of solar radiation pressure. This occurs because 
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gravitation acts on both the Earth and the satellite, but, due to the large 
masslarea ratio of the Earth, solar radiation pressure only affects the satellite. 
In both cases, there is no change in the eccentricity when T p  = 0, so that the 
lifetime is unaffected if perigee or apogee is on the same meridian as the Sun or 
Moon. 

Provided that the semi-major axis does not exceed one tenth of the Moon's 
distance from the Earth, the maximum possible value of the neglected term in 
equation (48) is o.ozn.m/day; it would usually be much less, however. The 
maximum errors in the rates of change of the other elements, due to the neglect 
of high-order terms in r / r d  in equations (50) to (53) are, at most, of the order of 
5 per cent. Moe (1960) has shown that the error introduced by neglecting the 
motion of the disturbing body during one revolution of the satellite is a factor 
( I  +o(fi/n>. The maximum error introduced by this factor is of the same order as 
the other errors. 

If the orbital plane of the disturbing body is taken as the reference plane, 
that is id = 0, the results of Section 3.2 reduce to those given by Moe (1960). In 
many of the references there has been a tendency to seek out only secular terms 
and to omit the periodic terms. If the latter are of long period, however, the 
amplitude of the oscillations produced by them may be large. Also resonance may 
occur. For most purposes only the effect of the Earth's gravitational field need be 
considered when investigating resonance, so that we can take (King-Hele 1958) 

287 

0 = - IO.O($~'(I -eZ)-zcosideg/day 

cj = 5.0 - (I -e2)-2(5 coszi- I)deg/day, (Y)"'" 
where RE is the equatorial radius of the earth, and assume that = o for the 
Moon. Five of the relations (56) produce resonance for both lunar and solar per- 
turbations if the orbital inclination takes one of the values given in Table 2. For 
lunar perturbations, five cases can never occur and the remaining five are only 
possible in limited ranges of the inclination. Values of a( I - e2)4/7/R~ which give 
resonance for particular values of i are plotted in Figure 3. For solar perturbations, 
values of a( I - e2)4'7/R~ are given in Figure 4. 

Table 2 

Inclinations giving resonance in the 
gravitational perturbations 

No. Relation Inclinations giving resonance 

I j + L j = o  4 6 O . 4  or 106O.8 

2 p - L j = o  73a-2 or 133O.6 

3 p + z L j = o  5 6 O . 1  or 151" 

4 8-zw = o  69" or 1 2 3 O - 9  

5 l h = o  63O.4 or 1 1 6 O . 6  
B 
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FIG. 3.-Resonant orbits for lunar perturbations. 

FIG. 4.-Resonant orbits for solar gravitational perturbations. 
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FIG. 5 .-Resonant orbits for solar radiation pressure. 

Table 3 

K e y  to resonance relations plotted 
in Figures 3 to 5 

No. Resonance relation 

6 
7 
8 
9 

I 0  
I 1  
I 2  

13  
I 4  
15 

The present theory breaks down for an equatorial orbit as the ascending node 
cannot be defined. This difficulty can be overcome by changing the reference 
plane. The ecliptic immediately suggests itself, so that id = o and LRd = o for the 
Sun, and ia = a and Qa = 52 for the Moon. 

The results for the effect of solar radiation pressure are rather lengthy; but, 
for many purposes, it may be possible to use the simpler results obtained by 
neglecting the Earth's shadow, as was done (Musen, Bryant & Bailie, 1960) 
when investigating the perturbations of satellite 1958 82 (Vanguard I). When the 
orbit is entirely in sunlight resonance may occur if the value of U( 1 - e2)4'7)/& 

lies on one of the curves given in Figure 5 .  
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7. Conclusions 
The equations given in Section 3.2 of this paper enable luni-solar gravitational 

perturbations to be evaluated. The theory applies primarily to satellites whose 
semi-major axis does not exceed one tenth of the Moon’s distance. At greater 
distances the error terms become larger, though they may still be small enough to 
be ignored for many purposes. The corresponding rates of change of the orbital 
elements averaged over one revolution can be evaluated from the equations given 
in Section 3.3. The results for a circular orbit are given in Section 3.5. All the 
necessary numerical information for evaluating the perturbations on a satellite of 
known size, shape and surface characteristics is given in Section 5 .  

The variations in the orbital elements of a particular satellite are not obvious 
at  first sight, except for the semi-major axis. Secular variations occur in the right 
ascension of the ascending node and in the argument of perigee. All elements 
except the semi-major axis exhibit long-period variations associated with the 
rotation of the major axis, with the motion of the disturbing body, and with the 
motion of the ascending node of the satellite relative to the ascending node of the 
disturbing body. For a near Earth satellite, however, whose orbit decays under the 
influence of air drag, the long-period effects may take on the appearance of secular 
variations. In  practice, too, the occurrence of one of the fifteen possible cases of 
resonance given in Section 3.4 should not be overlooked. Near-resonance is as 
important as resonance and the probability of this occurring by chance is quite 

The results given in Sections 4.2,4.3 and 4.4 enable the effects of solar radiation 
pressure to be evaluated. Except for the semi-major axis the elements normally 
exhibit long-period variations when the Earth’s shadow is neglected; but there are 
six cases of resonance, when the changes in the orbit over a long period may be 
large. 

serious, as Figure 4 5 -h ows. 
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