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S U M M A R Y
Characterization of seismic sources is an important aspect of seismology. Parameter uncer-
tainties in such inversions are essential for estimating solution robustness, but are rarely
available. We have developed a non-linear moment tensor inversion method in a probabilistic
Bayesian framework that also accounts for noise in the data. The method is designed for point
source inversion using waveform data of moderate-size earthquakes and explosions at re-
gional distances. This probabilistic approach results in an ensemble of models, whose density
is proportional to parameter probability distribution and quantifies parameter uncertainties.
Furthermore, we invert for noise in the data, allowing it to determine the model complexity. We
implement an empirical noise covariance matrix that accounts for interdependence of observa-
tional errors present in waveform data. After we demonstrate the feasibility of the approach on
synthetic data, we apply it to a Long Valley Caldera, CA, earthquake with a well-documented
anomalous (non-double-couple) radiation from previous studies. We confirm a statistically
significant isotropic component in the source without a trade-off with the compensated linear
vector dipoles component.

Key words: Time-series analysis; Inverse theory; Earthquake source observations; Surface
waves and free oscillations; Computational seismology.

1 I N T RO D U C T I O N

Seismic moment tensors (MTs) are a basic tool to make inferences
about earthquake sources. They can be used to map the fault struc-
ture at depth and infer the stress pattern. For these studies, as well
as characterising the seismic source itself, uncertainties of the MT
components are important. A number of agencies calculate MTs
of global or regional earthquakes, but parameter uncertainties are
rarely computed, even in more detailed studies. The MT is usu-
ally decomposed into a double-couple (DC, equivalent to shear
faulting), compensated-linear-vector-dipole (CLVD) and isotropic
(ISO) components. The uncertainties are particularly important
when examining earthquakes with significant non-DC components
because the amount of DC, CLVD and ISO components can signifi-
cantly vary with small perturbations of parameters (Zahradnı́k et al.
2008b). Recently, techniques based on probabilistic approaches
are emerging (e.g. Šı́lený 1998; Wéber 2006; Ford et al. 2009;
Duputel et al. 2012; Křı́žová et al. 2013; Stähler & Sigloch 2014)
and frequently, they use an ensemble of solutions to estimate the
uncertainties.

Departures from the pure DC model were initially assigned
to data noise because they are found for nearly all earthquakes.
However, with an ever-increasing number of seismometers and ad-
vances in data quality, non-DC components were better resolved and

observed mostly in volcanic and geothermal areas, mines and deep
subduction zones. The first earthquakes with well-constrained non-
DC mechanism were found in Icelandic volcanic complexes (e.g.
Klein et al. 1977; Foulger & Long 1984), Long Valley caldera,
California (e.g. Barker & Langston 1983; Julian 1983; Ekström
& Dziewonski 1985) and a number of volcanoes in Japan (e.g.
Ukawa & Ohtake 1987; Shimizu et al. 1987, 1988) and their mech-
anisms are still intriguing seismologists (e.g. Nettles & Ekström
1998; Tkalčić et al. 2009). The high non-DC components can be
a result of geometrically complex shear faulting, but are also at-
tributed to tensile faulting (opening and closing of tensile cracks),
heterogeneities or anisotropy in the medium and polymorphic phase
transformations (Frohlich 1994; Julian et al. 1998). Data from such
tectonic environments are often noisy, thus, it is crucial to account
for the noise in the inversion. There have been methods proposed to
simultaneously address the effects of noise, the source mislocation
and the uncertainty in the velocity structure (e.g. Šı́lený & Panza
1991; Guidarelli & Panza 2006) using the non-linear modelling and
turning parameter variances into confidence regions. Studies using
the seismic potency tensor also focused on the non-DC components
(Ross et al. 2015).

The source location is mostly determined by first motion data and
gives the hypocentre, which does not have to coincide with the cen-
troid. The MT solutions depend on centroid location, especially its
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depth (e.g. Dreger & Helmberger 1993). Zahradnı́k et al. (2008a)
proposed checking multiple locations with a grid-search method
to stabilise the MT solution. Thus, it is beneficial to include the
centroid as a parameter in the inversion. In traditional methods pa-
rameter uncertainties can be calculated in linearised inversions (e.g.
Riedesel & Jordan 1989; Vasco 1990; Zahradnik & Custodio 2012),
but inverting for the centroid location introduces non-linearity and
parameter uncertainties cannot be estimated in a straightforward
manner.

In order to estimate solution uncertainties and explore the model
space more thoroughly, we solve the inverse problem in the proba-
bilistic Bayesian framework (Box & Tiao 1973; Tarantola & Valette
1982; Christensen et al. 2011). Various flavours of Bayesian inver-
sion were already successfully implemented for some geoacoustical
and geophysical problems (Dettmer et al. 2007). Recently, Bodin
et al. (2012) employed a hierarchical transdimensional Bayesian in-
version in a tomographic study, jointly inverting receiver functions
and surface wave dispersion data. They allowed the number of free
parameters to vary throughout the inversion and inverted for noise
parameters in different data sets. A similar technique was applied in
a tomographic study of the lowermost mantle (Young et al. 2013).
Most recently, Pachhai et al. (2014) utilised the rigorous treatment
of data noise in a study of heterogeneities on top of the core-mantle
boundary. For a more detailed description of Bayesian transdimen-
sional method, including the hierarchical aspect, see a review by
Sambridge et al. (2013).

Bayes’ approach was first applied in seismic studies of earth-
quake sources by Ide et al. (1996) and Yagi & Fukahata (2008,
2011), who used Akaike Bayesian information criterion to deter-
mine optimal parameter values. In traditional inversions, the source
parameters are sought on different spatial scales and using differ-
ent datatypes. Similarly, the Bayesian inversion has been utilised to
invert wave polarities (Walsh et al. 2009) and seismic waveforms
of local (Wéber 2006), regional (Lee et al. 2011) and teleseismic
(Duputel et al. 2012; Stähler & Sigloch 2014) events. Bayesian in-
version was also applied by Dȩbski (2008) to compute the source
time function using empirical Green’s functions and not inverting
for the mechanism. It has also been used to infer the finite fault
models that employ seismic and geodetic data (Monelli et al. 2009;
Minson et al. 2014), model the finiteness of a caldera (Fichtner &
Tkalčić 2010) and investigate the uncertainties related to the source
time function and variability in the Earth structure (Razafindrakoto
& Mai 2014).

In this paper, we implement a hierarchical Bayesian inversion
method for the seismic MT to study moderate-size earthquakes and
explosions at regional distances. A hierarchical aspect of the in-
version means that the noise is treated as a free parameter (a.k.a.
hyperparameter) in the inversion. We let the data noise determine
the level of fit (and, consequently, the model complexity) by making
it a free parameter in the inversion, together with the MT param-
eters and the centroid location. This probabilistic approach gives
an estimate of parameter uncertainties together with their average
values. To avoid the trade-off between location and MT parame-
ters, we use two Markov chains to sample the parameter space, one
for the centroid location and another that samples noise and the
MT parameters at each location. We examine the performance of
the developed algorithm in synthetic experiments, with real station
locations and noise added to synthetic seismograms. Finally, we
analyse data from an earthquake in Long Valley caldera, California
and compare the algorithm performance with previously published
results.

2 H I E R A RC H I C A L B AY E S I A N
I N V E R S I O N F O R T H E C E N T RO I D
M O M E N T T E N S O R

In a Bayesian framework, the model parameters are treated as ran-
dom variables, thus, the sampling yields an ensemble of models
instead of only the best-fit solution. The ensemble can be used to
estimate parameter uncertainties and gain more information about
the model, in our case the seismic source. The Bayes’ theorem gives
p(m|d), the posterior distribution of model parameters m given the
observed data d, based on the prior distribution p(m) and the like-
lihood function p(d|m), namely

p(m|d) = c p(d|m)p(m). (1)

The constant c normalises the posterior distribution so its integral
over the model space equals to unity.

We have created an algorithm for a non-linear inversion of the
seismic MT, where the model space consists of three parameters
for the location (longitude, latitude and depth), six parameters for
the MT and one hyperparameter for the noise. If we consider
the noise to be the part of the data that we do not wish to ex-
plain (Scales & Snieder 1998), the theory errors are included in
the noise together with the measurement errors. With the level of
noise estimated, the rest of the information in the observed data
is a meaningful signal. Thus, data noise determines the model
complexity and the regularisation (smoothing and damping) is
avoided.

The prior probabilities for all parameters are set to be non-
informative, that is, a uniform prior is defined over a broad, physi-
cally reasonable range of values. The prior for location parameters
is defined for a discrete set of values around a previously determined
location with 1 km spacing in depth and 0.025◦ (∼2.5 km) spacing
for the epicentral coordinates. MT parameters have a uniform prior
over a large set of values based on an existing value for the scalar mo-
ment M0 (from −1.5∗M0 to 1.5∗M0) and the noise is defined as a per
cent of data root mean square (rms) and can have values up to 5*rms.
We express the noise in terms of the rms value because it better rep-
resents the whole signal than the maximum amplitude does (e.g. it
would be lower for a signal consisting of a simple waveform and
many zeros than for the same simple waveform surrounded by noise
or a complicated and longer waveform with the same maximum
amplitude).

2.1 Forward modelling

In the point source approximation, the displacement on Earth’s
surface is expressed as a convolution of spatial derivatives of the
elastic Green’s functions and the seismic MT. Displacement ui in
the direction i can be expressed as

ui (t) =
3∑

j=1

3∑
k=1

Gi j,k ∗ M jk, (2)

where j and k are the remaining two Cartesian coordinates and *
denotes the temporal convolution. To facilitate understanding of the
results, the MT is usually decomposed into the DC, CLVD and ISO
components (Jost & Herrmann 1989). Here, however, we follow
the approach of Kikuchi & Kanamori (1991), with slight modifi-
cations implemented in the frequency–wavenumber code AXITRA
used to create the Green’s functions (Bouchon 1981; Cotton &
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Figure 1. Mechanisms of elementary moment tensors used in the inversion.

Coutant 1997) and parametrize the MT using the following six
tensors

M1 =
⎛
⎝ 0 1 0

1 0 0
0 0 0

⎞
⎠ M2 =

⎛
⎝ 0 0 1

0 0 0
1 0 0

⎞
⎠

M3 =
⎛
⎝ 0 0 0

0 0 −1
0 −1 0

⎞
⎠ M4 =

⎛
⎝ −1 0 0

0 0 0
0 0 1

⎞
⎠

M5 =
⎛
⎝ 0 0 0

0 −1 0
0 0 1

⎞
⎠ M6 =

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ (3)

The first five tensors are DCs and determine the deviatoric part of
the solution, while the sixth tensor determines the ISO part. Their
focal mechanisms are shown in Fig. 1.

The full MT is simply a linear combination of the six elementary
tensors

M =
6∑

n=1

anMn =
⎛
⎝ −a4 + a6 a1 a2

a1 −a5 + a6 −a3

a2 −a3 a4 + a5 + a6

⎞
⎠ ,

(4)

where an are coefficients in the expansion.
It is reasonable to assume that all elementary tensors Mn have the

same time dependence, which can be convolved with the Green’s
functions derivatives to yield six elementary seismograms En:

En
i =

∑
j,k

Gi j,k ∗ Mn
jk (5)

Thus, we compute the synthetic seismograms as a linear combina-
tion of the six elementary seismograms with the same coefficients
an as in eq. (4):

ui (t) =
6∑

n=1

an En
i (6)

To increase the efficiency of the algorithm, we pre-compute the
elementary seismograms for a given set of locations so they do not
need to be calculated throughout the Monte Carlo search.

2.2 The likelihood and data noise covariance matrix

All information from the data is included in Bayesian inversion
through the likelihood function, which makes it a key factor. It
quantifies how well a particular set of parameters composing a
given model m reproduces the observed data d. We define the misfit
function using the data noise covariance matrix Ce

φ =
[
−1

2
(G(m) − d)T Ce

−1(G(m) − d)

]
, (7)

where G(m) are the modelled (synthetic) seismic waveforms. The
likelihood function is based on a Gaussian distribution

p(d|m)= 1√
(2π )N |Ce|)

exp

[
−1

2
(G(m) − d)T Ce

−1(G(m) − d)

]
,

(8)

where |Ce| is the determinant of the covariance matrix and N is the
number of points.

We consider different parametrizations of the covariance matrix.
In the simplest one, we do not take into account the noise correlation
and the matrix is diagonal (proportional to the identity matrix)

Ce = σ 2I, (9)

where σ 2 is the noise variance. In this case, the likelihood can be
simplified to

p(d|m) ∝ exp

[
−1

2

∣∣∣∣G(m) − d

σ

∣∣∣∣
2
]

. (10)

However, this formulation assumes uncorrelated noise, but noise
in seismic waveforms is considered correlated due to its band-
limited nature and the inelastic attenuation of the Earth (Yagi &
Fukahata 2008). Assuming uncorrelated noise can underestimate
parameter uncertainties and alter their values.

2.2.1 Estimating the covariance matrix

In previous Bayesian studies, the covariance matrix has been es-
timated in a few different ways. Some studies assume an expo-
nentially decaying or a Gaussian covariance matrix (e.g. Bodin
et al. 2012; Duputel et al. 2012), others compute the matrix from
data residuals (e.g. Dettmer et al. 2007) or synthetically generated
noise seismograms (e.g. Gouveia & Scales 1998; Sambridge 1999;
Piana Agostinetti & Malinverno 2010). We choose a combination of
the first and last approach and empirically estimate the covariance
matrix from a number of realisations of pre-event (ambient) noise
recorded on the stations used in the inversion, similar to Kolb &
Lekić (2014), and invert only for the noise variance. As the noise
series used to compute the covariance matrix might be influenced by
seasonal variations, we approximate it by an analytical expression
and subsequently parametrize it in three ways: using an exponen-
tially decaying function, a Gaussian function and a combination
of two attenuated cosine functions. This approach avoids repeating
the inversion, which is necessary if the matrix is directly computed
from data residuals. We do not use the empirical data noise covari-
ance matrix directly because it is not the same on all seismograms.
Using different matrices for all waveforms would be difficult to im-
plement. Parametrization makes it more general and less influenced
by seasonal variations of noise.

The noise used to compute the covariance matrix is pre-processed
in the same way as the data used in the inversion (bandpass filtered
between 20 and 50 s). We approximate the empirical matrix with an
exponentially decaying function and a Gaussian function because
they are commonly used in inversion studies. However, we do not
use a Gaussian covariance matrix in the inversion because of com-
putational difficulties in calculating its inverse. Ababou et al. (1994)
found it to be ‘worst’ conditioned compared to a number of other
matrices. A matrix with exponentially decaying elements has the
form

(Ce)i j = σ 2 exp

(
−|i − j |

re

)
. (11)

The noise variance is again denoted by σ 2, |i − j| is the time
difference between samples i and j and re is the decay factor.

When we examine the average autocorrelation functions (i.e.
the cross-diagonal terms of the covariance matrices) of the noise
recorded on stations around the globe (Fig. 2), their side lobes
are prominent. They are quasi-periodic, with oscillations decaying
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Figure 2. Autocorrelations (for non-negative lags) of the three-component
noise seismograms on different stations around the globe. Group one shows
results for four stations in California (BKS, CMB, KCC and ORV), two
stations in Australia (CTAO and ERAB), one in Japan (ERM) and one in
north Russia (NRIL). Stations in Group two (BRVK in Kazakhstan, ESK
in the United Kingdom, MBAR in Uganda and NNA in Peru) have more
complex autocorrelations of the horizontal components.

with the time lag. One attenuated cosine function could not ade-
quately capture the complexity of the autocorrelations, therefore
we parametrize them using two attenuated cosine functions

(Ce)i j = σ 2

[
b × exp

(
−|i − j |

re1

)
cos

(
2π (i − j)

L1

)

+ (1 − b) exp

(
−|i − j |

re2

)
cos

(
2π (i − j)

L2

)]
, (12)

where b denotes the amplitude of the first cosine function. Since σ 2

is the measure of noise level, we want the term inside the square
brackets to have a maximum of 1, which makes the amplitude of
the second cosine function equal to 1 − b. The periods of the
two cosine functions are denoted by L1 and L2 and re1 and re2 are
their exponential decay factors. This parametrization can adequately
approximate the side lobes of the autocorrelations (e.g. Figs 3b and
c show synthetic noise autocorrelations and both the exponential
and two cosine function fit).

2.3 Sampling of the parameter space

To estimate the posterior distribution, we use the Markov chain
Monte Carlo (MCMC) method. The MCMC is a random walk
through the parameter space guided by the values of likelihood
and based on the Metropolis–Hastings algorithm (Metropolis et al.
1953; Hastings 1970). It results in an ensemble of models whose
density reflects the posterior distribution. The first point in the chain

Figure 3. (a) Autocorrelations of 15 noise series (three components of noise on five stations) and their average value. (b) The best-fit values of an exponential
and two attenuated cosine functions for the average autocorrelation. (c) Covariance matrices corresponding to the average autocorrelation (empirical) and the
best fit for the two parametrizations.
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(the first model) is randomly chosen, from which the algorithm pro-
ceeds by creating a new model m’ as a perturbation of the last (m),
based on a Gaussian probability distribution q(m′|m), with a vari-
ance θ 2

i for a particular model parameter. The new model is accepted
with a probability α, which depends on the ratio of posteriors of
the new model and the previous one and the ratio of proposal dis-
tributions. Technically speaking, a uniform random number r with
values between 0 and 1 is generated and the acceptance probability
α is defined as

α(m′|m) = max

[
1,

p(m′|d)

p(m|d)
· q(m|m′)

q(m′|m)

]
(13)

Since the distributions q and p(m) are symmetric, the ratio in eq.
(13) depends only on the likelihood ratio p(d|m′)/p(d|m). If α ≥
r the new model m’ gets accepted and the previous model m is
replaced by it. This means that models with a higher likelihood
are always accepted, but the walk can also proceed to a less likely
model and adequately sample the posterior probability (Mosegaard
& Tarantola 1995).

The location parameters are fundamentally different from the
MT parameters because they dictate the shift from linearity to non-
linearity. Thus, we use two Markov chains: one to sample the loca-
tion parameters and another one to sample the remaining parame-
ters (noise and the MT parameters) for each point in the first (outer)
chain. The first part of every inner Markov chain (called the burn-in
period) is discarded and models are collected for the ensemble after
it has reached convergence, that is, when the misfit, the MT parame-
ters and the noise show no obvious trends and their fluctuation with
iteration number is similar to a white noise process. Convergence
was monitored in a number of tests prior to the inversion. It usually
occurs after several hundred iterations so a conservative value of
20 000 iterations was chosen as the length of the burn-in period.
Every 200th model from the post burn-in period is selected to elim-
inate dependent samples in the ensemble. To ensure the location
parameters are exhaustively sampled, but in the same time collect
a large number of samples from the maximum a posteriori (MAP)
location, the proposal for location parameters in the outer chain is
broad (θ2

i = 2.5) in the first 500 iterations and changes to a smaller
value (θ 2

i = 0.45) in the next 500 iterations. The ensemble of MT
and noise parameters is taken from the MAP location.

3 S E N S I B I L I T Y T E S T S

Initially, we investigate performance of the algorithm with syn-
thetic data. We use the configuration of an earthquake in Long
Valley Caldera, California and station locations from the Berkeley
Digital Seismic Network (BDSN; shown in Fig. 4) as a study case
(Dreger et al. 2000; Minson & Dreger 2008) to create synthetic
seismograms. The structure model used to create the elementary
seismograms and the synthetics is the Southern California (SO-
CAL) model, consisting of three horizontal layers over half-space
(Dreger & Helmberger 1990). The synthetic input source mech-
anism has substantial non-DC components (∼35 per cent CLVD
and ∼10 per cent ISO) and a Dirac source-time function; the syn-
thetic data are filtered between 0.02 and 0.05 Hz using a one pass
Butterworth filter.

Additionally, we add noise in the frequency domain, multiplying
the complex spectra by k(1 + r1 + ir2), where k is a constant and
r1 and r2 are random numbers between −1 and 1. This type of
noise simulates the propagation effects on the wavefield because
it introduces a phase shift together with an amplitude variation
(Kennett 1985). Furthermore, its covariance matrix shows similar

Figure 4. Map of the region showing the earthquake location in Long Valley
Caldera (green star), location of real stations used in the inversions (red
triangles) and synthetic stations added in the last synthetic experiment (blue
triangles). The insert in the lower left corner shows the smaller caldera area.

statistical properties as the real seismic noise. The autocorrelations
of noise traces created this way (Fig. 3a) have the same behaviour
as the real noise autocorrelations (Fig. 2).

The level of noise is calculated as a per cent of the data rms and
varies by a few per cents on different components. We perform the
inversion with three parametrizations of the noise covariance matrix
(defined by eqs 9, 11 and 12) for data without noise, with low (k =
0.25, i.e. ∼16 per cent data rms) and high (k = 1, i.e. ∼65 per cent
data rms) levels of noise, with σ 2 being the hyperparameter in the
inversion. The coefficients necessary to parametrize the Ce matrix
(re for the exponential matrix and b, re1, re2, L1 and L2 for the atten-
uated cosine matrix) were calculated prior to the inversion using the
Hyper-sweep code (http://www.iearth.org.au/codes/Hyper-sweep/)
that performs a grid search in a multidimensional space.

3.1 Data without noise

All three assumptions for the noise covariance matrix behaved
similarly for data without noise and retrieved the correct location
and MT. The location parameters converged in the first few hun-
dred iterations in the outer Markov chain. After 500 iterations, the
algorithm concentrates on a narrow area around the MAP location
(Fig. 5). The acceptance ratio for the location parameters is low so
we plot all the sampled locations (empty circles) together with the
accepted ones (full circles). We also show cross-sections through
the MAP source location to increase the visibility. The MT parame-
ters are exhaustively sampled during the burn-in period of the inner
Markov chains, but the final ensemble, collected after it, shows low
uncertainty (Fig. 6 and Table 1). The full MT MAP solutions agree
well with the input mechanism (Fig. 7a) and the seismograms are
indistinguishable from the input data (Fig. 7b). Given that this was
‘perfect’ data, created with the same structural model we use to
compute the elementary seismograms for the inversion, correct
retrieval of the input mechanism and low uncertainties are not sur-
prising.
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Figure 5. Centroid locations for 1000 iterations in the outer Markov chain for the inversion of data without noise assuming a covariance matrix with two
attenuated cosine functions. The average iteration number for each location determines its colour. Open circles show all proposed locations and full circles are
the accepted ones. Symbol sizes are determined by the likelihood value (the 1 per cent MAP locations are plotted with the largest circle, the next 9 per cent
with a smaller one, etc.). The black star represents the input location, while the green circle shows the MAP location. The first subplot shows locations in 3-D
and the other three subplots are cross-sections through the MAP source location.

We wish to examine the non-DC components so we visualise
them using the lune plots (Tape & Tape 2012), where longitude γ is
determined by the amount of the CLVD component and latitude δ by
the amount of the ISO component, placing the pure DC mechanism
in the middle. For data without noise, the final ensemble (darker
colours on all three plots) shows low uncertainty and coincides with
the input mechanism in all cases (Fig. 7c).

3.2 Data with added noise

Adding noise to the synthetic data somewhat affected the algorithm
convergence, the inner Markov chains converged slower. However,
this is not a strict rule because the convergence is also affected by
initial parameter values, which are random. When the initial values
are close to the optimal values, the algorithm will converge faster.

Inversions of data ‘contaminated with noise’ showed larger un-
certainties of the model parameters (Tables 2 and 3). As the wave-
lengths at frequencies used in the inversion are several tens of
kilometres long, the spatial resolution of the centroid location is
limited. Nevertheless, the retrieved location was only a few grid-
points away from the input location. The DC part of the mechanism
was close to the input values, but there were more differences in the
non-DC part.

When a low level of noise was added to the synthetic seismo-
grams, the algorithm converged to a location 1 km deeper and

2.5 km south of the epicentre when the diagonal and exponen-
tial noise covariance matrices were used. The DC part of the MT
was accurately retrieved (the MAP solutions had only a few de-
gree difference in strike, dip and slip from the input solution),
but the non-DC components were not (Fig. 7d). Seismograms
obtained with all three assumptions are quite similar and fit the
data (Fig. 7e). However, a more complex parametrization of the
noise covariance matrix, the one using two attenuated cosines, re-
sulted in a correct location and the correct non-DC components
(Fig. 7f).

With more noise added to the data, the earthquake was mislocated
with all three assumptions for Ce. The DC part of the mechanism
was close to the input values in all three cases, but the scalar moment
was overestimated by 4–8 per cent (Fig. 8a–c). The non-DC parts in
first two inversions are closer to the input source (Fig. 7i). However,
the uncertainties are largest in the third case, reflecting the high data
noise. Furthermore, the last inversion retrieved the correct epicentre
location.

3.3 Improving the azimuthal coverage

Stations used in the previous experiments had a large azimuthal
gap (more than 180◦) so we test the algorithm performance using
additional five (synthetic) stations distributed along the gap (blue
triangles in Fig. 4). Although an MT inversion with waveform data is
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Figure 6. The DC part of the solutions for data without noise before they
are collected for the ensemble (burn-in period) and afterwards. The solu-
tions were collected at the MAP location from inversions with a (a) di-
agonal, (b) exponential and (c) attenuated cosine covariance matrix. The
solutions are coloured based on the value of the variance reduction calcu-
lated with the L2 norm. The dashed green lines show the DC part of the input
mechanism.

theoretically possible even using data from a single station because
the number of data is larger than the number of parameters, the
noise can cause spurious non-DC components. The performance of
the inversion can be improved with good azimuthal coverage (e.g.
Šı́lený 1998; Zahradnik & Custodio 2012). We add the higher level
of noise to all data and compare the results of inversions with five
stations.

The MAP location was closer to the input location when an expo-
nential and an attenuated cosine matrices were assumed (∼2.5 km
horizontally and 1 km in depth, respectively). The DC components
were similar as before, but their uncertainty slightly decreased and
the variance reduction increased when diagonal and exponential
matrices were used (Fig. 8d–f and Table 4). Non-DC components
from all locations show a smaller spread than before (light colours
in Figs 9c and 7i) and an even stronger trade-off between the CLVD
and ISO components. Non-DC components from the MAP location
improved when using the attenuated cosine matrix.

4 A P P L I C AT I O N T O A L O N G VA L L E Y
C A L D E R A E A RT H Q UA K E

After testing the algorithm on synthetic data, we apply it to an
earthquake from a complex tectonic setting in Long Valley Caldera,
California. The analysed earthquake occurred on 1997 November
11 and was one of the four MW > 4.5 earthquakes with anomalous
radiation pattern from the November swarm (Dreger et al. 2000).
We use waveform data from the same five stations (BKS, CMB,
KCC, ORV and PKD, shown in Fig. 4) and filter it in the same way
as synthetic data in the previous examples. The inversion is per-
formed with all three assumptions for the covariance matrix. Since
the noise autocorrelations on these BDSN stations are different on
the horizontal and vertical components (they are in Group 1 in
Fig. 2), we use one parametrization for the horizontal components
and another for the vertical. The covariance matrices are computed
fitting the average noise autocorrelation for the five stations shown
in Fig. 2.

We centre the grid for the centroid location on epicentre reported
in the Council of the National Seismic System (CNSS) catalogue at
37.634◦N latitude and −118.946◦W longitude and include depths
from 3 to 20 km. The hypocentral depth reported in the CNSS
catalog is 7.1 km and the depth obtained by Dreger et al. (2000) is
5 km. Initially, we perform a linear inversion on a number of depths
and search for a time-shift between the data and Green’s functions
to accommodate for an imperfect structure model. Time-shifts for

Table 1. Range of parameter values for data without noise, in degrees. Strike, dip and slip are the usual parameters defining the DC
part of the solution, γ and δ are parameters from Tape & Tape (2012) that determine the amount of CLVD and ISO components,
respectively. Parameter γ can have values between −30◦ and 30◦ and δ between −90◦ and 90◦.

Strike Dip Slip γ δ

Input 301.66 58.60 −76.19
10.36 8.25

96.40 34.01 −111.36

Diagonal Ce 301.62–301.70 58.58–58.63 −76.23 to −76.16
10.34–10.41 8.18–8.29

96.35–96.44 33.98–34.03 −111.41 to −111.31
Exponential Ce 301.61–301.71 58.57–58.64 −76.24 to −76.15

10.32–10.42 8.16–8.31
96.34–96.47 33.97–34.05 −111.43 to −111.30

Attenuated cosine Ce 301.44–301.85 58.44–58.75 −76.37 to −76.01
10.18–10.60 7.92–8.62

96.11–96.67 33.86–34.18 −111.63 to −111.10
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Figure 7. (a) The input mechanism (black) and MAP solutions obtained for data without noise assuming a diagonal (grey), exponential (blue) and attenuated
cosine (red) covariance matrix. (b) Synthetic data and seismograms from three MAP solutions, coloured in the same way as beachballs. (c) Lune source-type
plots with solutions from all locations shown in light colours and the final ensemble shown in darker colours for the three inversions. The colours are as in the
previous two plots; the star shows the input value. (d), (e) and (f) are the same for data with a low level of noise and (g), (h) and (i) for data with a high level of
noise.
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Table 2. Range of parameter values for data with ∼16 per cent noise. For details see Table 1.

Strike Dip Slip γ δ

Input 301.66 58.60 −76.19
10.36 8.25

96.40 34.01 −111.36

Diagonal Ce 301.68–302.59 58.76–59.46 −75.61 to −74.76
8.50–9.42 15.07–16.38

94.34–95.55 33.56–34.31 −113.73 to −112.53
Exponential Ce 301.84–302.82 58.87–59.58 −75.35 to −74.45

8.47–9.43 15.20–16.62
93.92–95.20 33.52–34.34 −114.22 to −112.93

Attenuated cosine Ce 300.32–302.44 57.60–59.04 −77.48 to −75.68
9.26–11.19 7.33–10.68

95.69–98.31 33.35–34.86 −111.82 to −109.39

Table 3. Range of parameter values for data with ∼65 per cent noise. For details see Table 1.

Strike Dip Slip γ δ

Input 301.66 58.60 −76.19
10.36 8.25

96.40 34.01 −111.36

Diagonal Ce 300.85–303.98 58.22–60.41 −77.08 to −74.19
6.93–9.87 11.58–16.90

94.06–98.27 32.50–34.77 −114.58 to −110.57
Exponential Ce 300.44–303.42 57.21–59.43 −77.85 to −75.06

5.51–8.99 12.49–17.34
95.51–99.41 32.93–35.33 −112.98 to −108.88

Attenuated cosine Ce 296.44–304.35 54.76–59.88 −80.29 to −73.57
4.45–11.73 14.86–26.49

92.69–101.99 32.23–37.85 −113.90 to −104.53

Figure 8. Similar to Fig. 6, but for inversions of synthetic data with a high level of noise using: (a)–(c) 5 stations and (d)–(f) 10 stations.

depths from 5 to 8 km were the same for all five stations and we
continue to use those values in the Bayesian inversion.

The MAP location is the same for all three parametrizations of
Ce, about 2.5 km south and 2.5 km east of the CNSS epicentre,

at a depth of 6 km (green circle in Fig. 10). The MT solutions
obtained using all assumptions for Ce are similar to the solution of
Minson & Dreger (2008), but also show the mechanism uncertainty
(Figs 11, 12c and Table 5). The uncertainties, as well as the scalar
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Table 4. Range of parameter values for an inversion that uses 10 stations with ∼65 per cent noise. For details see Table 1.

Strike Dip Slip γ δ

Input 301.66 58.60 −76.19
10.36 8.25

96.40 34.01 −111.36

Diagonal Ce 301.87–304.32 58.09–59.67 −75.72 to −73.68
8.44–10.66 13.24–16.98

93.55–96.76 33.40–35.17 −115.20 to −111.94
Exponential Ce 301.97–304.53 58.18–59.91 −75.32 to −73.32

8.20–10.52 13.65–17.41
92.89–96.22 33.62–35.16 −115.75 to −112.72

Attenuated cosine Ce 299.09–303.60 56.33–58.99 −78.56 to −74.61
7.81–11.72 12.35–19.68

94.02–100.38 33.34–35.94 −113.11 to −107.37

Figure 9. (a) Input and recovered focal mechanisms for a synthetic experiment with 10 stations. (b) Three component seismograms. (c) The lune plots for all
three assumptions of Ce. For details see the caption of Fig. 7.

Figure 10. Sampled centroid locations for real data from the Long Valley Caldera. For details see the caption of Fig. 5.
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Figure 11. The DC part of the solutions for the LVC data, for details see
the caption of Fig. 6.

moment were highest when using an attenuated cosine covariance
matrix.

All three inversions resulted in a high ISO component
(∼45 per cent) and a CLVD component close to zero. The inversions
with diagonal and exponential covariance matrices gave a slightly
negative CLVD component, while the inversion with an attenuated
cosine covariance matrix gave a slightly positive CLVD, but still
lower than (Minson & Dreger 2008) solution (Fig. 12c). Interest-
ingly, we do not observe a prominent trade-off between the ISO
and CLVD components when looking at solutions from all sampled
locations (light colours on the lune plots) as in the synthetic tests.

5 C O N C LU S I O N S

We have shown that the hierarchical Bayesian inversion is well
suited for non-linear inversion of source parameters using noisy
waveform data. To account for the interdependence of observa-
tional errors, we parametrize the noise covariance matrix bringing
to bear noise recorded on stations used in the inversion. Inverting for
the level of noise takes into account the lack of knowledge on data
uncertainty. The procedure results in an ensemble of models show-
ing parameter uncertainties. A disadvantage of the method is that
it does not account for uncertainties in velocity models, inherited
through Green’s functions.

Synthetic tests show that the DC part of the solution is well
determined even for data with a high level of noise. Although we
are using long-period data, the location is close to the input value
and improves by using a covariance matrix computed from empirical
noise. The non-DC parts are resolved less well, but our approach
gives a good estimate of their uncertainty.

We have applied the approach to data from a complex tectonic
environment, the Long Valley Caldera. Solutions obtained using
different parametrizations of the covariance matrix are similar. The
centroid location and the DC component are well resolved and the
DC part agrees well with a previous result of Minson & Dreger
(2008). For this data set we do not observe a trade-off between
the CLVD and ISO components, and the ISO component is large
(∼45 per cent) in inversions with all parametrizations of the covari-
ance matrix.

Figure 12. Inversion results for the LVC data: (a) focal mechanisms, (b) seismograms, (c) the lune plots. For details see the caption of Fig. 7. The green
beachball in (a) and stars in (c) show the solution from Minson & Dreger (2008).
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Table 5. Range of parameter values for LVC data. For details see Table 1.

Strike Dip Slip γ δ

Diagonal Ce 255.88–262.45 48.24–54.18 114.80–124.65 −5.91–1.25 42.50–45.96
33.18–41.05 44.64–50.04 53.07–63.82

Exponential Ce 255.23–261.65 48.13–53.61 113.23–123.61 −3.95–1.88 43.52–46.46
34.08–41.70 44.50–49.33 54.30–65.13

Attenuated cosine Ce 255.66–263.14 49.49–56.06 113.45–125.23 −0.31–6.52 43.00–46.42
31.97–40.99 43.44–48.73 50.24–63.73

Future development of the method involves using different noise
parameters for different stations. This is important because geolog-
ical structures beneath stations, as well as stations’ proximity to the
sea, human activities and other factors can result in fairly different
levels of noise. Therefore, the hierarchical aspect can be extended
to include a different noise parameter to act as a weight for each
station or a group of stations in the inversion.
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