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S U M M A R Y
The space–time Epidemic-Type Aftershock Sequence (ETAS) model is extended by incor-
porating the depth component of earthquake hypocentres. The depths of the direct offspring
produced by an earthquake are assumed to be independent of the epicentre locations and to
follow a beta distribution, whose shape parameter is determined by the depth of the parent
event. This new model is verified by applying it to the Southern California earthquake cata-
logue. The results show that the new model fits data better than the original epicentre ETAS
model and that it provides the potential for modelling and forecasting seismicity with higher
resolutions.

Key words: Probabilistic forecasting; Probability distributions; Earthquake interaction, fore-
casting and prediction; Seismicity and tectonics; Statistical seismology.

1 I N T RO D U C T I O N

Clustering is one of the most important characteristics of seismic-
ity. Seismicity is generally divided into two parts: a background
part and a cluster part; the former is useful in long-term earthquake
forecasts whereas the latter is useful for short-term earthquake fore-
casts. Early studies of temporal clustering of earthquakes date back
to 1894, when the famous Omori law was proposed for the first
time by Omori (1895). Based on this formula and other empirical
laws, Ogata (1988) developed the Epidemic-Type Aftershock Se-
quence (ETAS) model and then generalized it to space–time (Ogata
1998). This model describes the features of earthquake clustering
of foreshocks, main shocks and aftershocks.

In the past decade or so, this model has been greatly developed
(see Console & Murru 2001; Console et al. 2003; Zhuang et al.
2002, 2004, 2008; Ogata 2004; Zhuang et al. 2005; Console et al.
2006; Marzocchi & Lombardi 2009; Helmstetter et al. 2006; Werner
et al. 2011; Zhuang 2011). Among these works, Zhuang et al.
(2002) introduced a stochastic declustering algorithm to objectively
extract background seismicity from an earthquake catalogue. This
algorithm provides us with the probability description of any two
earthquakes in a catalogue; based on this probability we can quantify
the triggering effect of a foreshock to its main shock, or of a main
shock to any aftershock.

The time-varying seismicity rate function in the ETAS model is
written as

λ(t, x, y|Ht ) = Pr{N (dt × dx × dy) ≥ 1 | Ht }
dt × dx × dy

= νμ(x, y) +
∑
i :ti <t

ξ (t − ti , x − xi , y − yi ; Mi ), (1)

where μ(x, y) is the background seismicity rate, ν is a relaxation
parameter to speed the convergence in the maximum likelihood
estimation procedure, Ht includes information of the events that

occur before time t (Zhuang et al. 2002, 2004, 2005, 2008; Zhuang &
Ogata 2006), and i runs over all the events in the observation history
Ht . The cluster seismicity rate of an earthquake with magnitude M,
ξ (t, x, y; M), has the formulation

ξ (t, x, y; M) = κ(M)g(t) f (x, y; M), (2)

where κ(M) = Aeα(M−MC ) is the expected number of events trig-
gered by an event of magnitude M, with MC being the magnitude
threshold, and the functions g(t) = p−1

c (1 + t
c )−p and f (x, y; M) =

q−1
π D2eγ (M−MC ) (1 + x2+y2

D2eγ (M−MC ) )−q are normalized time and space prob-
ability density functions (pdfs), respectively.

Although the 2-D epicentre ETAS model is widely used in many
applications, a 3-D model incorporating earthquake hypocentres
has been required but has not yet been developed. A direct way
of including the focal depths in a 3-D model is to add the depth
dimension in the space pdf in f. However, this makes the nor-
malization of the space pdf very difficult to treat because the
integration of f (x, y, z) is limited in the seismogenic layer and
the normalizing factor of the generalized space pdf depends on
the depth of the parent. Thus it is necessary to treat the focal
depth separately from the longitude and the latitude. Kagan (2007)
generalized the epicentre χ distribution into a hypocentre density

φ(r |p) = r
ρ
√

2π
{exp[− (r−p)2

2 ] − exp[− (r+p)2

2 ]} for analysing earth-
quake location errors, and the number of events is the integral value
in a sphere of radius R, centred on the hypocentre of the parent. Mai
et al. (2005) used a gamma distribution in modelling hypocentres,
with the integral domain of the spatial pdf ranging from 0 to +∞.
Both Kagan (2007) and Mai et al. (2005) regarded the hypocentre
location as ranging to ∞ in their pdfs. Since earthquakes usually
occur in the seismogenic layer, from surface to a specific depth de-
pending on the local tectonic background, such treatments may not
be ideal in describing earthquake hypocentres.

366 C© The Authors 2015. Published by Oxford University Press on behalf of The Royal Astronomical Society.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/203/1/366/584931 by guest on 20 April 2024

mailto:guoyicun@pku.edu.cn


Hypocentral ETAS model 367

Figure 1. (a) Epicentre distribution of earthquakes above magnitude 3.5 from Southern California. The white-dashed polygon represents the region for model
fitting; its vertices are (−119.0, 33.0), (−115.0, 33.0), (−117.0, 37.0), (−120.8, 37.0) and (−121.5, 34.5). The total number of earthquakes is 3678, and
2002 of these are located within the white polygon. (b) Histogram of earthquake depths. The solid line denotes the shape of the beta distribution B(2.0, 4.5),
corresponding to eq. (5) with η = 2.5, z′ = 12 km.

Figure 2. Examples of the distributions in eq. (5). The black and red lines
represent η = 5 and η = 10 in eq. (5), respectively. The solid, dashed, and
dot-dashed lines are depths of the main shocks at 5, 15, and 25, respectively.

Before proposing a proper density function, we inspected the
characteristics of the focal depth distribution in the catalogue.
Fig. 1(a) gives the locations of M3.5+ earthquakes in the South-
ern California Earthquake Data Center (SCEDC) catalogue; details
of this catalogue are given in Section 3. From Fig. 1(b), we can
see that earthquakes usually occur in the crust layer and most of
their hypocentres are located at depth less than tens of kilome-
tres. For the sake of simplicity, we exclude those earthquakes with

deeper hypocentres than the thickness of the seismogenic layer, H,
in our analyses. In the 3-D ETAS model, the depth pdf should
have the following characteristics: (a) The seismicity beyond a
depth of 0 km and H km is zero; (b) the nearer two earthquake
hypocentres are, the higher is the probability of the latter event
triggered by the previous one; (c) the integration of the depth
pdf from 0 to H should be 1; that is, the triggering abilities of
main shocks are limited in the seismogenic layer. In the following,
we use the beta distribution, which satisfies the above prerequi-
sites, as the depth distribution in the formulation of a hypocentral
ETAS model, and we validate this treatment through stochastic
reconstruction.

2 T H E 3 - D E TA S M O D E L

In our 3-D ETAS model, the time-varying seismicity rate function
is written as

λ(t, x, y, z|Ht )

= μ(x, y, z) +
∑
i :ti <t

ξ (t − ti , x − xi , y − yi , z − zi ; Mi , zi ), (3)

where zi is the focal depth of a parent event. The second part, that
is, the cluster seismicity in eq. (3), is

ξ (t, x, y, z; M, z′) = κ(M)g(t) f (x, y; M)h(z, z′), (4)

where κ , g and f are the same as in eq. (2), and the focal depths obey
a beta distribution:

h(z; z′) = ( z
Z )η

z′
Z

(
1 − z

Z

)η
(

1− z′
Z

)

Z B
(
η z′

Z + 1, η
(
1 − z′

Z

) + 1
) , (5)
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with z/Z denoting the focal depths normalized by the thickness
of seimogenic layer Z, z′ being the depth of the main shock, and
B(p, q) being the beta function

B(p, q) =
∫ 1

0
t p−1(1 − t)q−1dt. (6)

We neglect events beyond the seismogenic layer Z, since deep
earthquakes in the subducting zone have a different clustering fea-
ture than that of the ETAS model. The parameter η controls how the
triggered events concentrate at the depth of the parent event: a big η

means a high concentration and η = 0 means a uniform distribution
(Fig. 2).

We use the maximum likelihood procedure to estimate the pa-
rameters in the 3-D ETAS model. The log-likelihood function (cf.
Daley & Vere-Jones 2003, chap. 7) is

log L(θ ) =
∑

j :(t j ,x j ,y j ,z j )∈S×[T1,T2]×Z

log λ(t j , x j , y j , z j |Ht j )

−
�

S

∫ Z

0

∫ T2

T1

λ(t, x, y, z|Ht )dt dz dx dy, (7)

where θ = (ν, A, α, c, p, D, q, γ, η) are the model parameters, and
j runs over all events in the study region S, the depth range Z, and
the time period [T1, T2]. Note that the time–space range for j can be
smaller than that for i in eq. (3) for the large events beyond but near
the study area. Since the background is also unknown, an iterative
algorithm (Zhuang et al. 2002) is used to estimate the background
rate and the model parameters simultaneously.

3 DATA S E L E C T I O N A N D A NA LY S E S

We used the earthquake catalogue from Southern California (SC),
during the period from 1981 January 1 to 2011 June 30, in the range
of 114◦–122◦E, 32◦–38◦N. We selected the earthquakes above a
magnitude threshold of 3.5 after considering the incompleteness of
aftershocks immediately after the large main shocks. The region
for estimation is the polygon shown in Fig. 1(a). Since most of
earthquakes in SC are shallow events, the depth of the seismogenic
layer is taken as 30 km here; i.e. those events deeper than 30 km
are neglected in our analyses. Fig. 1(b) shows the depth distribution
of all the events in the catalogue. Most of earthquakes occur in
the upper crust layer (shallower than 15 km), with only a very tiny
portion of all earthquakes at depths ≥30 km.

4 R E S U LT S

4.1 Data fittings

Table 1 shows the results from fitting the 2-D and 3-D ETAS models
to the data. However, these two models cannot be compared directly
through their likelihoods since the observation data set for the 2-D
model is {(ti, xi, yi, mi)} and that for the 3-D model is {(ti, xi, yi,
zi, mi)}. Kagan (1991) used a histogram of the depth distribution
of hypocentres in a likelihood analysis of earthquake catalogues;
here we follow the same technique used to modify the likelihood of

the 2-D model. We incorporated the depth information in the 2-D
likelihood to contrast ETAS models with two null hypotheses: (a)
earthquakes are distributed uniformly in depth; (b) earthquakes are
distributed empirically just the same as the observational history.
For the latter case, we used the histogram of depths of all events in
the catalogue to estimate the depth distribution: h′(z) = n

N�z , where
n is the number of events in the depth range (z, z + �z). Note that
case (b) degenerates to case (a) when �z takes the thickness of the
whole seismogenic layer Z. Based on the above idea, we corrected
the likelihood of the 2-D ETAS model by using the following two
equations:

log Lu = log L2D − N log Z , (8)

log Le = log L2D +
N�z∑
i=1

ni log
ni

N�z
; (9)

that is, log Lu and log Le are the log-likelihood function values when
the uniform and empirical depth distributions are attached to the
2-D ETAS models, respectively, but independent of other compo-
nents. In eqs (8) and (9), N�z = Z/�z is the total number of discrete
depths, ni is the number of events located in [zi, zi + �z], log L2D

is the likelihood for the 2-D ETAS model, N is the number of earth-
quakes in the target area, and Z denotes the maximum depth that
we used in the model. By using eqs (8) and (9), we obtained log-
likelihood values of −4761.4 for the 2-D model with a uniform
depth distribution and −3454.3 for the 2-D model with an empir-
ical depth distribution, both of which are much smaller than the
likelihood value of −2904.6 for the 3-D ETAS model.

Except for the log-likelihood values, the common parameters of
the 2-D and 3-D models are slightly different. Such differences
can be interpreted in the following way: The total seismicity is the
summation of background and cluster parts; a change in the latter
part affects the former part, which in turn affects the parameters
of the cluster part in spite of the fact that we treated the depth pdf
separately in the cluster seismicity. Especially, an α value that is
smaller in the 3-D ETAS model than in the 2-D ETAS model shows
that the triggering ability of larger earthquakes of the 3-D model
is less than that of the 2-D model. This is because, when we add
the depth dimension in the 3-D model, events far away from the
hypocentres of large earthquakes are more likely to be treated as
being triggered by small earthquakes whose hypocentres are closer.

4.2 Validation through stochastic reconstruction

We used stochastic reconstruction to verify our new model. The
stochastic reconstruction method (Zhuang et al. 2004) helps us
visualize the data fitting. The depth density h(z; z′) can be recon-
structed for a given z′ by using the following equation:

ĥ(z; z′)

=
∑

i j ρi j I (|z j − zi | ∈ [z − �z
2 , z + �z

2 ])I (zi ∈ [z′ − �z′
2 , z′ + �z′

2 ])

�z
∑

i j ρi j I (zi ∈ [z′ − �z′
2 , z′ + �z′

2 ])
.

(10)

Table 1. Results of data fittings from the 2-D and 3-D ETAS models.

Model A c α p D2 q γ η log L log Lu/log Le

2dETAS 0.302 0.013 1.40 1.16 0.88 × 10−5 1.58 1.62 – +2047.8 −4761.4/−3454.3
3dETAS 0.364 0.013 1.18 1.17 0.10 × 10−4 1.50 1.45 31.7 −2904.6 –
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Figure 3. Reconstructed relationship between aftershock frequencies versus depths. Five depths of main shocks are selected to show the results here. Solid
lines denote the theoretical curves of h(z).

In Fig. 3, we show the reconstructed aftershock distribution at five
depths of z′. In the 5- and 10-km cases, we can see that although we
do not incorporate focal depths in the 2-D model, the reconstruction
results are almost the same as those from the 3-D model. For the
deeper 20- and 25-km depths, results from the 2-D and 3-D models
are less consistent because only a few events occur at these depths.
Because the 2-D ETAS model does not incorporate focal depths, it
is not surprising that the reconstructed points for 15-, 20- and 25-
km parent-shock depths tend to be distributed uniformly in Fig. 3.
However, at 5- and 10-km depths, the reconstructed depth density
functions have distributions very similar to those from the 3-D ETAS
model. This occurs because, although we do not take focal depths
into consideration in the 2-D ETAS model, two events of greatly
differing depth are also likely to have epicentres that are far from
each other, and vice versa, since the epicentres are the projections of
hypocentres on the Earth’s surface. In other words, the agreement
of the 2-D results with the 3-D theoretical curves indicates that
the beta distribution is quite appropriate for describing triggering
effects of earthquakes in the depth dimension.

4.3 Reconstruction of magnitude, time, and epicentre
distributions

Schoenberg (2015) pointed out that modification of the spatial term
of the ETAS model in Ogata (1998) can result in substantial changes
to the parameters of temporal and magnitude terms, since the total
seismicity rate function λ is not separable in x and y. Similarly
in our 3-D-hypocentre ETAS model, although we only modify the

2-D-epicentre ETAS model by multiplying a depth distribution in
the clustering seismicity, it is not surprising that all the parameters
in Table 1 change more or less because λ is not multiplicative in
depth dimension z. Thus any changes of parameter values resulting
from the depth dimension that we add could also affect distributions
of other dimensions. Stochastic reconstruction helps us understand
to what extent the triggering ability, time and epicentre pdfs of the
3-D ETAS model differ from those of the 2-D ETAS model. All
of these distributions can be reconstructed by using the following
equations from Zhuang et al. (2004):

κ̂(M) =
∑

i

∑
j ρi j I (Mi ∈ [M − �M/2, M + �M/2])∑

i I (Mi ∈ [M − �M/2, M + �M/2])
, (11)

ĝ(t) =
∑

i, j ρi j I (t j − ti ∈ [t − �t/2, t + �t/2])

�t
∑

i, j ρi j
, (12)

f̂ R(r ) =
∑

i, j ρi j I (ri j ∈ [r − �r/2, r + �r/2])

�r
∑

i, j ρi j
, (13)

where ρ ij is the probability of event j triggered by previous event i,
I is the index function taking 1 if the statement is true and rij is the
standardized distance defined by

ri j =
√

(x j − xi )2 + (y j − yi )2

D2eγ (Mi −MC )
. (14)

Figs 4(a)–(c) show the reconstructed results from the 2-D and
3-D ETAS models.
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Figure 4. Reconstruction results of (a) the triggering abilities, (b) the time lag distribution, and (c) the epicentre distribution. Theoretical curves of κ(M) time
and space pdfs are plotted by solid and dashed lines for the 2-D and 3-D models, respectively.

(1) In Fig. 4(a), the exponential law fits κ(M) well in the 2-D
model, and the fitting becomes worse in the 3-D model, especially
in the large-magnitude interval. Note that the reconstructed curves
tend to be lower than the theoretical ones for both models. By com-
paring the theoretical curves of the 3-D and 2-D models, we note
that the triggering abilities of large events are lower whereas those
of small events are higher in the 3-D case. This is because, for large
main shocks, an overall η value has limits in triggering aftershocks
in the whole seismogenic layer. More importantly, since earthquake
depth has the biggest uncertainty in the hypocentral coordinates, we
have to ensure that the number of events is large enough to get stable
results from the 3-D model. Meanwhile, the influence of depth un-
certainty can also be reflected in the results, and it becomes more sig-
nificant in case of catalogues compiled from a sparser seismological
network.

(2) Fig. 4(b) shows the time lag distributions of the two models.
Their results are almost the same and fit the theoretical curves very
well. The main discrepancy is at the ends of the curves, where the
time difference is >1000 days. The decrease at the tail is due to the
absence of events beyond the observation period. The consistency
at short time lags (0.01 day) indicates that the completeness of
the catalogue above magnitude 3.5 is quite good. On the whole,
the agreement between theoretical curves and reconstructed points
from 0.01 to 1000 days shows a good fit to the Omori–Utsu law.

(3) From Fig. 4(c), we can see that the theoretical curve of
the 3-D model completely overlaps with the 2-D curve, so the
difference of reconstructed points of the two models can be
neglected.

In summary, by reconstruction, we can see that the 3-D
ETAS model preserves the time and epicentre distributions of the
2-D ETAS model very well, and bigger change occurs in the trig-
gering ability function, as also indicated in the maximum likelihood
estimates of parameters.

4.4 Background seismicity estimation

Background seismicity is an important parameter obtained from
statistical models because it is related to the tectonic loading rate.
In our ETAS model, it is assumed to be constant in time and to
vary in space. As mentioned in Section 2, we can estimate the
background seismicity in the 2-D ETAS model through the al-
gorithm introduced by Zhuang et al. (2002). The total seismic-

ity rate is estimated by the variable kernel estimation method as
follows:

m̂1(x, y) = 1

T

N∑
j=1

kd j (x − x j , y − y j ), (15)

where m̂1(x, y) is the total spatial intensity function (first-order
moment density) and dj represents the bandwidth of event j in the
Gaussian kernel function kd j (x − x j , y − y j ) given by

kd j (x, y) = 1

2πd j
exp

{
− x2 + y2

2d2
j

}
. (16)

Then the background seismicity rate can be calculated by using

μ̂(x, y) = 1

T

N∑
j=1

φ j kd j (x − x j , y − y j ), (17)

where φj is the probability of event j being a background event from
the stochastic decluster algorithm (Zhuang et al. 2002). For the 3-D
ETAS model, the corresponding total seismicity rate at a specific
depth is written as

m̂ ′
1(x, y, z) = 1

T

N∑
j=1

kd j (x − x j , y − y j )

×
(

z
Z

)dz
z j
Z

(
1 − z

Z

)dz

(
1− z j

Z

)

B
(
dz

z j

Z + 1, dz

(
1 − z j

Z

) + 1
) , (18)

where dz is the fixed bandwidth in the depth dimension. The back-
ground seismicity rate can be calculated in a similar way as the 2-D
case by multiplying the background probabilities of events obtained
from declustering in the 3-D model.

Fig. 5 shows background seismicity rates estimated from 2-D and
3-D ETAS models. The 2-D result can be taken as the integration
of 3-D results from Z to the Earth’s surface. The seismicity rates at
specific depths provide us with more earthquake hazard information
in the depth dimension. From the results of the Southern California
catalogue, we can see that most earthquakes occur in the upper layer
of the crust and that the most active seismicity occurs at a depth of
∼10 km.
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Figure 5. Background seismicity rate estimated from 3-D and 2-D ETAS models. (a), (b), (c), (d), and (e) are from the 3-D model with depths of 5, 10, 15,
20 and 25 km, respectively. (f) is from the 2-D model. The background seismicity values are in events day−1 deg−2, and contours are plotted on a logarithmic
scale.

5 C O N C LU S I O N S

We extended the 2-D-epicentre ETAS model to a 3-D-hypocentre
ETAS model to analyse earthquake hypocentres by introducing a
beta distribution for modelling the earthquake depth. The 3-D model
provides the potential for forecasting seismicity with high resolu-
tion. The stochastic reconstruction results from the SCEDC cata-
logue indicate that the 3-D model performs better in data fittings
than the 2-D model. Whether this beta distribution of depth pdf is ap-
propriate for other regions, for instance, the more complicated JMA
catalogue, should be verified in future studies. The reconstructed
results of the 3-D ETAS model in Fig. 3 have a fixed triggering band
(∼10 km) in the depth pdf. This band may not be big enough for
large earthquakes since their aftershocks may extend to the whole
seismogenic layer. Further research taking into account the scaling
of earthquake magnitudes in depth triggering should be made. One
possible way to solve this problem is to apply finite sources instead

of point sources for large earthquakes, as implemented by Guo et al.
(2015) for the 2-D ETAS model. The utility of the 3-D ETAS model
is limited because reliable and complete hypocentre catalogues are
currently not available all over the world; in fact, the Southern Cal-
ifornia catalogue is perhaps the best. Therefore, obtaining robust
results from the 3-D model will require a local dense seismological
network to locate earthquake hypocentres.
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