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S U M M A R Y
We developed an inversion method to estimate unbiased interseismic slip-deficit rates at plate
interfaces from observed GPS velocity data with an elastic dislocation model. In this method,
first, we subtract theoretical surface velocities due to known steady relative plate motion from
the observed GPS data, and presume the residuals to be caused by slip deficit at plate interfaces.
However, the observed GPS data always include rigid block translation and rotation, which
cannot be explained by the elastic dislocation model. We treated the rigid block translation and
rotation as systematic errors in the analysis, and removed them by transforming the velocity
data into the average strain rates of triangle elements composed of adjacent GPS stations. By
this transformation, original information about intrinsic deformation is preserved. Applying a
unified Bayesian inversion formula to the GPS strain data, we can obtain unbiased slip-deficit
rate distribution. We demonstrated the applicability of the method of GPS strain data inversion
through the analysis of interseismic GPS velocity data (1996–2000) in the Kanto region, central
Japan, where the North American (NAM), Pacific (PAC) and Philippine Sea (PHS) plates are
interacting with each other in a complicated way. From this analysis we found a broad and high
slip-deficit rate zone on the NAM-PHS plate interface, extending from southeast off the Boso
peninsula to the Tokai region through the Izu-Mainland collision zone. Two high slip-deficit
rate zones along the Sagami and Suruga troughs correspond to the source regions of the 1923
Kanto earthquake (M7.9) and a potential Tokai earthquake. On the PHS-PAC plate interface,
though the estimation errors are large, we found a moderate slip-deficit rate zone far southeast
off the Boso peninsula, where an M7.4 earthquake has occurred in 1953.

Key words: Inverse theory; Space geodetic surveys; Plate motions; Subduction zone pro-
cesses; Kinematics of crustal and mantle deformation.

1 I N T RO D U C T I O N

The occurrence of earthquakes can be regarded as the release of
tectonically accumulated stress by sudden faulting (Knopoff 1958;
Savage 1969). In the case of interplate earthquakes, the stress ac-
cumulation results from interseismic slip deficit (back slip) at plate
interfaces (Savage & Prescott 1978; Spence & Turcotte 1979). Sur-
face deformation due to slip deficit can be computed on the basis of
elastic dislocation theory. Then, we can formulate the inverse prob-
lem of estimating unknown slip-deficit rates at plate interfaces from
observed surface deformation data. On the concept of back slip,
for example, Matsu’ura et al. (1986) modelled the San Andreas–
Sargent–Calaveras fault system, California, by segmented steadily
slipping block boundaries with shallow partially locked portions
(seismogenic faults), and estimated the steady-slip rates of block
boundaries and the slip rates and widths of seismogenic faults

by applying an inversion formula for Bayesian models incorporat-
ing direct prior information about the values of model parameters
(Jackson & Matsu’ura 1985) to trilateration data of the Hollister
network spanning the fault system. In this analysis, the differences
of fault-slip rates from block-slip rates give the slip-deficit rates.

In the Jackson–Matsu’ura inversion formula, relative weight of
prior information to observed data is fixed in advance, and so it gives
a maximum likelihood solution. To optimize the relative weight,
that is, to select the best among possible maximum likelihood so-
lutions, Yabuki & Matsu’ura (1992) introduced Akaike’s Bayesian
Information Criterion (ABIC; Akaike 1980) based on the entropy
maximization principle (Akaike 1977), and developed an inversion
method to estimate coseismic fault-slip distribution from geodetic
data by incorporating indirect prior information about the spatial
variations of model parameters. Yoshioka et al. (1993, 1994) have
applied the Yabuki–Matsu’ura inversion method to interseismic
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levelling and trilateration data, and estimated the spatial distribu-
tion of slip-deficit rates at plate interfaces in the Tokai and Kanto
regions, central Japan, assuming the concept of back slip to be ap-
plicable. However, in the case of convergent plate boundaries, the
concept of back slip is not applicable unlike the case of transcur-
rent plate boundaries, because steady plate subduction inevitably
causes intrinsic crustal deformation (Matsu’ura & Sato 1989; Sato
& Matsu’ura 1992; Hashimoto et al. 2004).

Since daily station-coordinate data of GEONET (a nation-wide
dense GPS network in Japan) became available, a number of at-
tempts to estimate interseismic slip-deficit rates at plate interfaces
in the Japan region from GPS displacement rate (velocity) data have
been done with the Yabuki–Matsu’ua inversion method (e.g. Sagiya
1999, 2004; Ito et al. 1999, 2000; Nishimura et al. 2004; Suwa et al.
2006) but without considering the effects of steady plate subduc-
tion. In the analysis of GPS displacement data, unlike trilateration
data, another serious problem arises, because the displacement data
include rigid block translation and rotation. The Earth’s crust is usu-
ally treated as a linear elastic body, but it includes a number of de-
fects such as micro cracks and active faults spreading over tectonic
boundary zones. Interseismic brittle fracture and/or plastic flow at
these defects cause some rigid translation and rotation of crustal
blocks, which cannot be explained by simple slip-deficit models
based on elastic dislocation theory (Noda & Matsu’ura 2010). If
observed data contain theoretically unexplainable coherent noise
(systematic errors), the result of inversion analysis will be seriously
biased.

One of the effective ways to remove rigid block translation and
rotation from GPS array data is to transform observed horizon-
tal displacement vectors into changes in distance between adjacent
GPS stations, which correspond to baseline length changes in trilat-
eration. To avoid the dependence of horizontal displacement vectors
on the choice of a fixed point, Ito et al. (1999, 2000) have used the
baseline length changes transformed from GPS displacement data
in the estimation of interplate slip-deficit rates in southwest and
northeast Japan. Hashimoto et al. (2009, 2012) have also used the
baseline length changes but to remove the systematic errors due to
rigid block translation and rotation from GPS array data. Apply-
ing an inversion formula for Bayesian models incorporating both
direct and indirect prior information (Matsu’ura et al. 2007) to the
baseline length change data, they succeeded in obtaining unbiased
slip-deficit rate distribution on the North American–Pacific plate
interface in northeast Japan. Noda & Matsu’ura (2010) have given
a theoretical basis for the use of baseline length changes instead of
horizontal displacement data.

A similar but more direct way to remove rigid block transla-
tion and rotation from GPS array data is to transform observed
horizontal displacement vectors into average strain tensors for in-
dividual triangles composed of adjacent GPS stations (Appendix).
This transformation is linear, and so original information in GPS
array data is preserved without distortion. Mazzotti et al. (2000)
and Henry et al. (2001) have pointed out the advantage of using
strain tensors instead of displacement vectors in the inversion anal-
ysis of GPS array data to estimate the interseismic locking depths
and coupling ratios of plate interfaces in the Japan region. However,
their strain tensors are not the average strain tensors of individual
triangles but the weighted local averages of them defined at GPS
stations. In their cases, the transformation of displacement vectors
into strain tensors is not linear, and so original information in GPS
array data will be distorted.

In Section 2 of this paper, taking all the points mentioned above
into consideration, we develop an inversion method to estimate unbi-

ased distribution of interseismic slip-deficit rates at plate interfaces
from GPS array data. In Section 3, we demonstrate the applicability
of the inversion method through the analysis of interseismic GPS
array data (1996–2000) in the Kanto region, central Japan.

2 M AT H E M AT I C A L F O R M U L AT I O N

In this section, we mathematically formulate the inverse problem
of estimating interseismic slip-deficit rates at plate interfaces from
GPS array data on the basis of Bayesian statistical inference theory.
First, we derive expressions for interseismic surface velocities due
to the increase of slip deficit at plate interfaces by applying the
technique of hereditary integral to general solutions for a step-type
point dislocation source. Second, parameterizing slip-deficit rate
distribution with known basis functions, we obtain a vector-form
observation equation for GPS velocity data. Third, we transform
the observation equation for velocity data into that for strain rates.
Finally, incorporating direct and indirect prior information into ob-
served data, we construct a Bayesian model with hierarchic structure
controlled by hyperparameters, for which Matsu’ura et al. (2007)
give an inversion formula to obtain optimum solution.

2.1 Representation of interseismic crustal deformation

We consider an elastic surface layer overlying Maxwell-type vis-
coelastic half-space under gravity, and take a Cartesian coordinate
system (x1, x2, x3) so that the x1−x2 plane coincides with the free
surface and the x3-axis points vertically upwards as shown in Fig. 1.
The elastic surface layer corresponds to the lithosphere, and the vis-
coelastic half-space to the asthenosphere. We introduce an interface
�(η) that divides the elastic surface layer into two plates. Given the
3-D geometry of the plate interface in a functional form,

x3 = f (x1, x2), (1)

we can compute the unit normal vector n of �(η) as

n =
⎛
⎝ n1

n2

n3

⎞
⎠ = 1√

(∂1 f )2 + (∂2 f )2 + 1

⎛
⎝−∂1 f

−∂2 f
1

⎞
⎠ . (2)

Here, ∂1(2) denotes partial differentiation with respect to the spatial
coordinate x1 or x2.

By definition, any indigenous source in an elastic body can be
represented by a moment tensor (Backus & Mulcahy 1976a,b). We
suppose that the elastic body has been in an equilibrium state under

Figure 1. A coordinate system, plate interface geometry, and the notation of
normal and slip-direction vectors. The shaded portion of the plate interface
� represents a potential seismogenic region �s. The black arrows, n and
ν, denote the unit normal and slip-direction vectors, respectively. The grey
arrow shows the horizontal motion of the underlying plate relative to the
overlying plate.
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gravity before the time t = 0. Then, for given moment density
tensor distribution m pq (ξ , t) in a source region Vs, the quasi-static
displacement field ui (x, t) is expressed in the form of convolution
integral:

ui (x, t) =
∫ t

0
dt ′
∫

Vs

∂q Gip(x,t − t ′; ξ , 0) ṁ pq (ξ , t ′) dξ t ≥ 0.

(3)

Here, Gip(x, t ; ξ , t ′) represent the quasi-static displacement re-
sponses at a point x and time t to unit step-type single force at
a point ξ and time t ′, ∂q Gip(x, t ; ξ , t ′) are their partial derivatives
with respect to ξq , and the dot means differentiation with respect to
t . The explicit expressions of the partial derivatives of displacement
response functions are given in Yabuki & Matsu’ura (1992) for an
elastic half-space model and Hashima et al. (2008) for an elastic-
viscoelastic layered half-space model with gravitational effects.

When the distribution of moment density tensor is localized at
a plate interface �(η), using the Dirac delta function δ(ξ − η), we
can represent it as

m pq (ξ , t) = m�
pq (η, t)δ(ξ − η). (4)

In the case of fault slip, the explicit expression of m�
pq is given by

m�
pq (η, t) = μw(η, t)[νp(η)nq (η) + νq (η)n p(η)], (5)

where μ is the rigidity of the elastic medium surrounding the source,
w the magnitude of fault slip, ν the unit slip-direction vector, and n
the unit normal vector of �(η) defined in eq. (2). If the direction of
fault slip is parallel to the projection of a relative plate motion vector
Vpl = Vpl(h1, h2, 0) on the plate interface, the unit slip-direction
vector ν is given by

ν =
⎛
⎝ ν1

ν2

ν3

⎞
⎠= 1√

1 + (n1h1 + n2h2)2
/

n2
3

⎛
⎝ −h1

−h2

(n1h1 + n2h2)/n3

⎞
⎠ .

(6)

Thus, substituting eqs (4) and (5) into eq. (3), we obtain general
expressions for the displacement field due to fault slip as

ui (x, t) =
∫ t

0
dt ′
∫

�

Ui (x, t − t ′;η, 0) ẇ(η, t ′) dη t ≥ 0 (7)

with

Ui (x, t ; η, t ′) = μ∂q Gip(x, t ; η, t ′)[νp(η)nq (η) + νq (η)n p(η)].

(8)

Here, Ui (x, t ; η, t ′) denote the quasi-static displacement response
functions for a unit step-slip at a point η on the plate interface.

Now, we divide the plate interface � into a seismogenic region
�s and the remaining steady-slip region � − �s as shown in Fig. 1.
The fault-slip motion w(η, t) in the seismogenic region can be
represented by the superposition of steady slip at the rate of relative
plate motion Vpl(η) and its perturbation ws(η, t), and then

w(η, t) =
{

Vpl(η) t + ws(η, t) on �s

Vpl(η) t on � − �s

t ≥ 0. (9)

In this study, we simply suppose that the slip perturbation is periodic
in the seismogenic region:

ws(η, t) = −ẇs(η)t + ẇs(η)T
n∑

k=1

H (t − kT )

(n + 1)T > t ≥ 0, (10)

where H (t) is the Heaviside function, and T denotes the recurrence
interval of interplate earthquakes.

As the time lag t − t ′ increases, the quasi-static displacement
response functions Ui (x, t ; η, t ′) in eq. (8) tend to certain con-
stants, U∞

i (x; η) ≡ Ui (x, ∞;η, 0) , which can be easily computed
by using an equivalence theorem in linear viscoelasticity (Fukahata
& Matsu’ura 2006). Then, assuming the recurrence interval T to
be longer than the effective relaxation time τe of the lithosphere–
asthenosphere system, we can write eq. (7) for an interseismic calm
period after the latest interplate earthquake at t = nT as

ui (x, t) = ci (x) + (t − τe)
∫

�

U∞
i (x; η)Vpl(η) dη

−(t − τe)
∫

�s

U∞
i (x; η) ẇs(η) dη

+ T

∫
�s

[Ui (x, t − nT ;η, 0) − Ui (x, 0;η, 0)]ẇs(η) dη

(n + 1)T > t > nT (11)

with

ci (x) =
∫ τe

0
dt ′
∫

�

Ui (x, t − t ′;η, 0) ẇ(η, t ′)dη. (12)

The first constant term on the right side of eq. (11) represents some
non-linear effect associated with the sudden initiation of steady
plate subduction at t = 0. The second and third terms represent the
surface displacements due to steady forward slip at Vpl(η) over
the whole plate interface and steady backward slip at ẇs(η) in
the seismogenic region, respectively. The last term represents the
surface displacements due to postseismic stress relaxation in the
asthenosphere.

Differentiating both sides of eq. (11) with respect to t , we obtain
the expressions of interseismic surface velocities due to slip deficit
at the plate interface as

u̇i (x, t) =
∫

�

U∞
i (x; η) Vpl(η) dη−

∫
�s

U∞
i (x; η) ẇs(η) dη

+ T

∫
�s

U̇i (x, t − nT ;η, 0)ẇs(η) dη (n + 1)T > t > nT .

(13)

The first and second terms on the right side of eq. (13) represent sur-
face velocities due to steady slip over the whole plate interface and
steady slip-deficit in the seismogenic region, respectively, and the
third term represents the surface velocities due to postseismic stress
relaxation in the asthenosphere. The viscosity of the asthenosphere
has been estimated to be 4 × 1019Pa s on global average (Cathles
1975), but it takes a somewhat smaller value (5 × 1018Pa s) than the
global average in subduction zones (Matsu’ura & Iwasaki 1983),
and so the third term exponentially decays with time after the event
at a time constant of tens of year. Then, except for the early stage
of the earthquake cycle, we may approximate eq. (13) as

u̇i (x) =
∫

�

U∞
i (x; η) Vpl(η) dη −

∫
�s

U∞
i (x; η) ẇs(η) dη. (14)

In most analyses of interseismic crustal movements, on the back-
slip concept by Savage (1983), the first term (effects of steady plate
subduction) has been assumed to be zero. However, as demonstrate
by Matsu’ura & Sato (1989), the back-slip concept is not applicable
to the case of convergent plate boundaries.
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2.2 Observation equations for displacement data

The slip perturbation is not necessarily parallel to the direction of
steady slip. So, in addition to the slip-deficit rate ẇs(η) in eq. (10),
which is the primary component parallel to the direction of steady
slip and represented by ẇP

s (η) hereafter, we need to consider a
complementary component ẇC

s (η) perpendicular to the direction of
steady slip. Then, we represent the distribution of each slip-deficit
rate component on �s(η) by the superposition of a finite number of
known basis functions Φl (η1,η2) (l = 1, ..., L) defined on a η1−η2

plane parallel to the Earth’s surface (x3 = 0):

ẇP
s (η)d�(η) = 1

n3(η)

L∑
l=1

aP
l Φl (η1,η2) dη1dη2, (15)

ẇC
s (η)d�(η) = 1

n3(η)

L∑
l=1

aC
l Φl (η1,η2) dη1dη2. (16)

Using the above expressions, we can rewrite eq. (14), for example,
as

u̇i (x) = u̇ss
i (x) +

L∑
l=1

aP
l U P

il (x) +
L∑

l=1

aC
l U C

il (x) (17)

with

u̇ss
i (x) =

∫
�

U∞
i (x; η) Vpl(η) dη (18)

and

U P
il (x) = −

∫ ∫
1

n3(η)
U∞

i (x; η)Φl (η1,η2) dη1dη2, (19)

U C
il (x) = −

∫ ∫
1

n3(η)
U ′∞

i (x; η)Φl (η1,η2) dη1dη2. (20)

Here, u̇ss
i (x) in eq. (18) are the surface velocities due to steady plate

subduction, computed for a given global plate motion model, and
U ′∞

i (x; η) in eq. (20) denote the quasi-static displacement response
functions at t = ∞ for the complementary slip component, defined
by

U ′∞
i (x; η) = μ∂q Gip(x, ∞; η, 0)

[
ν ′

p(η)nq (η) + ν ′
q (η)n p(η)

]
.

(21)

In the above equation, ν ′(η) represents the unit vector on �s(η)
perpendicular to the direction of steady slip.

Thus, for given surface velocity data u̇obs
i (i = 1, 2) at points

x = xk (k = 1, ..., K ), we obtain an observation equation in vector
form:

u̇obs = u̇ss + Ua + eobs. (22)

Here, u̇obs and u̇ss are 2K × 1 dimensional data vectors with the
elements u̇obs

i (xk) and u̇ss
i (xk), respectively, eobs is a 2K × 1 dimen-

sional error vectors, a is a 2L × 1 dimensional model parameter
vector composed of aP with the elements aP

l (l = 1, ..., L) and aC

with the elements aC
l (l = 1, ..., L), and U is a 2K × 2L dimen-

sional coefficient matrix composed of UP and UC, whose elements
are numerically calculated from eqs (19) and (20), respectively.
Subtracting the theoretically computed velocities u̇ss from the both
sides of eq. (22), we obtain the following observation equation for
the residual velocities u̇res ≡ u̇obs − u̇ss:

u̇res = Ua + eres. (23)

We solve the above observation equation for the model parameters
a. Given the optimum solution, we can calculate the optimum slip-

deficit rate distributions, ẇP
s (η) and ẇC

s (η), from eqs (15) and (16),
respectively.

2.3 Transformation of GPS velocity data into strain rates

The displacement data obtained by GPS measurements, which are
the difference between the current and previous coordinates of ob-
servation stations, contain systematic errors due to the rigid transla-
tion and rotation of crustal blocks, which cannot be explained by the
present theoretical model in eq. (13) or (14). As shown in Appendix,
one of the effective ways to remove the rigid block translation and
rotation from GPS array data is to transform observed horizon-
tal displacement vectors into average strain tensors for individual
triangles composed of adjacent GPS stations.

Applying the transformation rule in eq. (A19) to every element of
a GPS triangular mesh, we can define a transformation matrix R for
a whole data set, composed of the sub-matrices Rklm = AklmBklm

for triangle elements 
Pk Pl Pm . Then, premultiplying both sides of
eq. (23) by the transformation matrix R, we obtain an observation
equation for GPS strain rates:

d = Ha + e (24)

with

d = Ru̇res, H = RU, e = Reres. (25)

Here, d is a N × 1 dimensional (N = 3×number of triangle el-
ements) data vector, a is a M × 1 dimensional (M = 2L) model
parameter vector, H is a N × M dimensional coefficient matrix,
and e is a N × 1 dimensional error vector. Note that the number of
triangle elements, and so the number of strain rate data, depends on
how we construct the triangular mesh from GPS stations. In addi-
tion, to complete the description of the observation equation in eq.
(24), we must specify the statistical properties of data errors e.

The data errors eres in eq. (23) generally consist of observation
errors eobs in GPS measurements and modelling errors emod due to
imperfection in theoretical models:

eres = eobs + emod. (26)

Then the data errors e in eq. (24) can be written as

e ≡ Reres = Reobs + Remod. (27)

Here, we simply assume the transformed observation errors Reobs

and modelling errors Remod to be uncorrelated and their statistical
properties to be Gaussian with zero mean and covariance matrices
σ 2

obsEobs and σ 2
modEmod, respectively. Then, the data errors e also

obey Gaussian distribution,

e ∼ N (0, σ 2E), (28)

with zero mean and the covariance matrix

σ 2E = σ 2
obsEobs + σ 2

modEmod. (29)

In the case of GPS velocity data, correlation between observa-
tion errors eobs is weak and their variances are almost the same,
and so we may write Eobs in eq. (29) as RRT following the er-
ror propagation rule. On the other hand, the modelling errors emod

such as rigid block translation and rotation have significant long-
range correlation. However, transforming emod into Remod, we can
resolve the long-range correlation between modelling errors. So,
assuming weak correlation between unresolved modelling errors,
we may regard Emod in eq. (29) as a diagonal matrix D. From such
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consideration, we set the basic structure of the covariance matrix of
data errors e as

σ 2E = σ 2(RRT + c2D). (30)

Here, we treated σ 2
obs as an unknown scale factor σ 2, because we

know only its rough estimate. The parameter c2 (= σ 2
mod

/
σ 2) was

introduced to control the relative weight of modelling errors to
observation errors. Note that taking c2 → 0 means regarding theo-
retically unexplainable coherent noise as signal.

The matrix Aklm in eq. (A19) has a premultiplying factor, the
inverse of which is given by the product of the side-lengths li j

(i j = kl, lm, mk) and the sine of internal angles si (i = k, l, m) of
a triangle element. Then, from the first term on the right side of
eq. (30), we can see that the observation errors eobs are enormously
amplified by the displacement-strain transformation, if any side-
length or internal angle of the triangle element takes a very small
value. To avoid this problem, as pointed out by Feigl et al. (1990),
we have to construct the triangular mesh so that the shape of every
element becomes as close to the equilateral triangle as possible.
The optimum triangular mesh in such a sense can be constructed
by using the method of Delaunay triangulation (e.g. De Berg et al.
1997).

2.4 Bayesian model and inversion formula

Finally, following Matsu’ura et al. (2007), we construct a Bayesian
model by incorporating direct and indirect prior information into
observed data. From eq. (24), on the assumption of Gaussian distri-
bution of data errors in eq. (28), we obtain a stochastic model that
relates the observed data d with the model parameters a as

p( d| a; σ 2) = (2πσ 2)−N/2 |E|−1/2

× exp

[
− 1

2σ 2
(d − Ha)TE−1(d − Ha)

]
, (31)

where σ 2 is an unknown scale factor, and |E| denotes the determi-
nant of E in eq. (30).

In addition to the observed data, we have two different sorts of
prior information; that is, direct prior information about the most
plausible values of slip-deficit rates and indirect prior information
about the degree of spatial variation in slip-deficit rates. From plate
tectonics, we may postulate that slip-deficit rate vectors are almost
parallel to the direction of plate convergence, and their most plau-
sible values are zero. Then the direct prior information about the
model parameters, aP and aC, can be written in the form of proba-
bility density function (pdf) as

r1(a; ε2) = (2πε2)−M/2 |F|−1/2 exp

[
− 1

2ε2
aTF−1a

]
, (32)

where ε2 is an unknown scale factor, and F denotes a M × M
positive definite matrix given by

F =
[

γ 2IP O
O IC

]
. (33)

Here, following Matsu’ura et al. (2007), we introduced the parame-
ter γ 2 (>1) to quantitatively represent the postulate that slip-deficit
rate vectors are almost parallel to the direction of plate convergence.
If the postulate is very strict, we should take the value of γ 2 to be
infinity (no direct constraint for aP). If the postulate is very loose,
we should take the value of γ 2 to be unity.

On the other hand, from physical consideration, we may postulate
that the spatial distribution of slip-deficit rates must be smooth in

some degree. Following Yabuki & Matsu’ura (1992), we define the
roughness g written in the positive-definite quadratic form of the
model parameters, aP and aC, as

g = (aP)TGPaP + (aC)TGCaC = aTGa, (34)

where GP(C) are L × L symmetric matrices, the i j elements of which
are given by

GP(C)
i j =

2∑
k=1

2∑
l=1

×
∫ ∫

1

n3(η)

1

s2
k (η)s2

l (η)

∂2Φi (η1, η2)

∂ηk∂ηl

∂2Φ j (η1, η2)

∂ηk∂ηl
dη1dη2

(35)

with

si (ξ ) =
√

1 + n2
i (ξ )

/
n2

3(ξ ). (36)

Then the indirect prior information can be written in the form of
pdf as

r2(a; ρ2) = (2πρ2)−M/2 |G|1/2 exp

[
− 1

2ρ2
aTGa

]
. (37)

Combining r1(a; ε2) and r2(a; ρ2) in a proper way (Fukahata et al.
2004), we obtain the pdf form of total prior information about the
model parameters a:

q(a; ρ2; ε2) = (2π )−M/2
∣∣ρ−2G + ε−2F−1

∣∣1/2

× exp

[
−1

2
aT(ρ−2G + ε−2F−1)a

]
. (38)

We now construct a Bayesian model by combining q(a; ρ2; ε2) in
eq. (38) and p( d| a; σ 2) in eq. (31) by Bayes’ rule:

p( a; σ 2, α2, β2
∣∣d) = c(2πσ 2)−(M+N )/2 |E|−1/2

∣∣α2G + β2F−1
∣∣1/2

× exp

[
− 1

2σ 2
s(a)

]
(39)

with

s(a) = (d − Ha)TE−1(d − Ha) + aT
(
α2G + β2F−1

)
a. (40)

Here, α2 ≡ σ 2/ρ2 and β2 ≡ σ 2/ε2 are hyperparameters that control
the relative weights of the indirect and direct prior information to
the observed data, respectively. To determine the optimum values of
the hyperparameters, we can use a Bayesian information criterion
(ABIC) proposed by Akaike (1980), the explicit expression of which
is given in Matsu’ura et al. (2007) as

ABIC(α2, β2|d) ≡ −2 log
∫ +∞

−∞
p( a; σ 2, α2, β2

∣∣d)da + C

= N log s(a∗) − log
∣∣α2G + β2F−1

∣∣
+ log

∣∣HTE−1H + α2G + β2F−1
∣∣+ C ′ (41)

with

a∗ = (HTE−1H + α2G + β2F−1)−1HTE−1d, (42)

where a∗ denotes the M × 1 dimensional solution vector that max-
imizes the posterior pdf in eq. (39) for certain fixed values of α2

and β2, and C ′ is a term independent of α2 and β2. The optimum
values of α2 and β2 that minimize ABIC can be found by iterative
numerical search. Once the optimum values of α2 and β2 are found,
denoting them by α̂2 and β̂2, we can obtain the optimum model pa-
rameters â and the covariance matrix C(â) of their estimation errors
as
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â = (HTE−1H + α̂2G + β̂2F−1)−1HTE−1d, (43)

C(â) = σ̂ 2(HTE−1H + α̂2G + β̂2F−1)−1 (44)

with

σ̂ 2 = s(â)/N . (45)

3 A P P L I C AT I O N T O G P S DATA
I N T H E K A N T O R E G I O N

We demonstrate the applicability of the inversion method devel-
oped in the previous section through the analysis of interseismic
GPS array data in the Kanto region, central Japan. In this region
the Pacific (PAC) plate is descending beneath the North American
(NAM) and Philippine Sea (PHS) plates, and the PHS plate is de-
scending beneath the NAM plate and running on the PAC plate at
its eastern margin (Ishida 1992; Hashimoto et al. 2004) as shown in
Fig. 2. The eastern part of the NAM-PHS plate interface is a seismo-
genic region, where the Genroku–Kanto (M8.1) and Taisho–Kanto
(M7.9) earthquakes have occurred in 1703 and 1923, respectively.
The western part is also a seismogenic region, which has ruptured at
the time of the 1854 Ansei–Tokai earthquake (M8.4). On the other
hand, the northern part is a locked region, where the Izu peninsula
is colliding with the Mainland of Japan. For computation of the
displacement response functions in eq. (13) or (14), we used an
elastic-viscoelastic layered half-space model under gravity, where
the rigidity and thickness of the elastic surface layer were taken to
be 40 GPa and 60 km, respectively, and the viscosity of the under-
lying viscoelastic half-space to be 5 × 1018 Pa s on the analysis of
coseismic and postseismic crustal movements associated with the
1923 Kanto earthquake by Matsu’ura & Iwasaki (1983).

Figure 2. Tectonic setting and 3-D geometry of plate interfaces in the
Japan region. The upper surfaces of the Pacific and Philippine Sea plates,
descending beneath the North American/Philippine Sea plates and the North
American/Eurasian plates, respectively, are represented by the grey iso-depth
contours at intervals of 10 km. The central rectangle shows the model region
for inversion analysis.

3.1 Data and model setting

To monitor the crustal movements of the Japanese Islands, a nation-
wide dense GPS network (GEONET) has been operated by Geo-
graphical Survey Institute of Japan (now Geospatial Information
Authority of Japan) since 1996. Applying a least-squares colloca-
tion method to GPS daily coordinate data for the interseismic calm
period of 1996–2000, Sagiya (2004) has obtained a set of hori-
zontal velocities at GEONET stations in the Kanto region. In the
present analysis, we use basically the same dataset as this one after
removing the data of the following GPS stations: (1) all stations
at volcanic islands along the Izu–Bonin arc, (2) three stations near
Ito, the northeastern part of the Izu peninsula, strongly affected
by the 1998 earthquake swarm off Ito (Nishimura 2002) and (3)
five stations near the indefinite plate boundary in the Izu–Mainland
collision zone. In Fig. 3(a), we show the GPS horizontal velocities
used in the present analysis. According to Sagiya (2004), the stan-
dard deviations (observation errors) of these velocity data are in the
range of 1–3 mm yr−1. It should be noted that these data contain not
only interseismic deformation due to slip deficit at plate interfaces
but also long-term deformation due to steady plate subduction.

From ISC (International Seismological Centre) hypocentre data,
Hashimoto et al. (2004) have constructed a realistic 3-D model of
plate interface geometry in and around Japan as shown in Fig. 2.
In this model, the depth (z = −x3) to each plate interface is repre-
sented as a continuous and differentiable (up to the second order)
function, z = − f (x1, x2), by superposing bi-cubic B-splines with
equally spaced local supports in the x1- and x2-directions. So, from
eq. (2), we can compute the unit normal vector n(η) of the plate
interfaces �(η) everywhere. The 3-D geometry of plate interfaces
has been modelled by also Nakajima & Hasegawa (2006) for north-
east Japan, Hirose et al. (2008) for central Japan, and Nakajima &
Hasegawa (2007) for southwest Japan. In their models, however, the
depths to plate interfaces are given only at grid points, and so the
continuity and differentiability of plate interfaces are not guaranteed
everywhere. In our model, given global plate motion (NUVEL-1A;
DeMets et al. 1994), we can compute the magnitude Vpl(η) and
direction ν(η) of steady slip vectors from eq. (6) at any point on
the plate interfaces. Then the long-term surface velocities due to
steady plate subduction at GPS stations are obtained by evaluating
the first term on the right side of eq. (13) and also eq. (14) as shown
in Fig. 3(b). Subtracting the computed long-term surface velocities
from the observed GPS velocities, we obtain the residuals u̇res in
eq. (23) as shown in Fig. 3(c).

In the Kanto region, the descending PHS plate directly contacts
with the NAM and PAC plates on its upper and lower sides, respec-
tively, as shown in Fig. 4. So, as the model regions �s(η), we took
the blue stippled portion of the NAM-PHS plate interface and the
pink-coloured portion of the PHS-PAC plate interface but not the
NAM-PAC plate interface, because plate interfaces about the east-
ern margin of the descending PHS plate, which was once a fluid-rich
subduction zone forearc, would be still weak. The spatial distribu-
tion for each of the primary and complementary components of
slip-deficit rate vectors is represented by the superposition of 696
normalized bi-cubic B-splines for the NAM-PHS plate interface and
433 normalized bi-cubic B-splines for the PHS-PAC plate interface.
In either case, the local supports of the bi-cubic B-splines are taken
to be 8 km in both the x1- and x2-directions. Since the Taisho–Kanto
earthquake (M7.9) occurred in 1923, this region has been in a long
calm period, and so the third term (effects of post-seismic stress
relaxation) in eq. (13) is negligible. Then we may use eq. (14) to
analyse the GPS array data in the period of 1996–2000.
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Figure 3. Interseismic horizontal velocities at GPS stations in the Kanto region, central Japan. (a) Horizontal velocities obtained from GPS measurements
for 1996–2000 (Sagiya 2004). (b) Theoretical horizontal velocities due to steady plate subduction. (c) Residual horizontal velocities obtained by subtracting
the theoretical velocities in (b) from the observed velocities in (a). The grey arrows represent the relative velocity vectors to a reference point YST, which is
indicated by a solid circle in each diagram.

We constructed the optimum triangular mesh from the GPS sta-
tions in Fig. 3 with the method of Delaunay triangulation. Then,
following eq. (25), we transformed the residual velocity vectors u̇res

into the average strain rates d and the coefficient matrix U into the
corresponding coefficient matrix H. In Figs 5(a) and (b), we show
the transformed average strain rates in the form of dilatation and
maximum shear strain, respectively, together with the optimum tri-
angular mesh indicated by the grey solid lines. For the covariance
matrix σ 2E of data errors in eq. (30), considering the systematic in-
crease in spacing of GPS stations with distance from the NAM-PHS
plate boundary, we set its explicit form as

Ei j = [RRT]i j + c2(li

/
l̄)2δi j , (46)

where li

/
l̄ denotes the normalized perimeter of the i th triangle.

In the present case, the average spacing of GPS stations is about

Figure 4. Plate interface geometry in the Kanto region and model setting.
The blue and red iso-depth contours (10-km intervals) represent the NAM-
PHS and NAM/PHS-PAC plate interfaces, respectively. The blue-stippled
portion of the NAM-PHS plate interface and the pink-coloured portion of
the PHS-PAC plate interface show the model regions for inversion analysis.
The blue and red arrows indicate the steady slip vectors at the NAM-PHS
and PHS-PAC plate interfaces, respectively. NAM, North American plate;
PHS, Philippine Sea plate; PAC, Pacific plate.

20 km, and so we took the standard value of perimeter l̄ to be 60
(= 3 × 20) km. As to c2, since modelling errors will be larger than
observation errors (1–3 mm yr−1), we should search its appropriate
value within the range of 1 < c2 < ∞. In this range, the optimum
estimate of σ 2 in eq. (45) decreases monotonously as c2 increases,
but it contradicts the original meaning of σ 2 in eq. (30). Such
contradiction will be resolved if we could select the appropriate
value of c2 so that the optimum estimate of σ 2 accords with the
variance of observation errors σ 2

obs. Then, we may use the accordance
of the optimum estimate of σ 2 with σ 2

obs as a criterion to select the
appropriate value of c2, though we know only the rough estimate
of σ 2

obs. For the direct prior information in eq. (33), on account of
the rotation of the Izu microplate proposed by Nishimura et al.
(2007) on the geodetic data inversion with a block-fault model,
we took the value of γ 2 to be 9 to allow the deflection of slip-
deficit rate vectors from the direction of plate convergence in the
range of ±20 degrees. In addition, we set the relative weight of
smoothness parameter (1

/
ρ2) in eq. (37) for the PHS-PAC plate

interface to the NAM-PHS plate interface to be 9 to improve the
low sensitivity of model parameters on the PHS-PAC plate interface.
Note that strengthening smoothness suppresses estimation errors at
the expense of resolution.

3.2 Inverted slip-deficit rate distribution

Applying the inversion formula given in Section 2.4 to the strain
rates transformed from the GPS velocity data, we obtained the opti-
mum slip-deficit rate distribution on the NAM-PHS and PHS-PAC
plate interfaces. We plotted ABIC for c2 = 10 (most appropriate
among 1, 10, 100 and 1000) as a function of the hyperparameters
α2 and β2 in Fig. 6, where the cross indicates the minimum point that
gives the optimum values of hyperparameters α̂2 and β̂2. For these
values, the optimum model parameters â and the covariance ma-
trix C(â) of their estimation errors can be computed from eqs (43)
and (44), respectively, and the optimum slip-deficit rate distribution
from eqs (15) and (16).

We show the inverted slip-deficit rate distribution on the NAM-
PHS and PHS-PAC plate interfaces in Figs 7(a) and (b), respec-
tively, together with their estimation errors in Figs 8(a) and (b).
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Figure 5. The horizontal strain rates transformed from GPS velocity data. (a) Dilatation. (b) Maximum shear strain. The black bar in each triangle indicates
the direction of maximum horizontal contraction. The grey solid lines show the optimum triangular mesh constructed from GPS stations with Delaunay
triangulation.

Figure 6. The contour map of ABIC plotted as a function of hyperparame-
ters α2 and β2. The contour intervals are taken to be 10.0. The cross indicates
the minimum point that gives the optimum values of hyperparameters.

From Fig. 7(a), we can see that the broad and high slip-deficit rate
(>20 mm yr−1) zone extends from southeast off the Boso penin-
sula to the Tokai region along the plate boundary segmented into
the Sagami trough, the Izu–Mainland collision zone, and the Su-
ruga trough. The depth range of the high slip-deficit rate zone is
about 5–20 km except the collision zone, where the interplate cou-
pling reaches 50 km in depth. In this high slip-deficit rate zone,
the accumulation of tectonic stress due to plate convergence grad-
ually proceeds during the interseismic period. The remaining part

of the NAM-PHS plate interface is in the state of steady slip at
plate convergence rates, and so tectonic stress does not accumulate
there.

With the same plate interface geometry and inversion formula as
in the present analysis, Matsu’ura et al. (2007) have analysed the lev-
elling and triangulation data associated with the 1923 Kanto earth-
quake (M7.9), which is the last great earthquake occurred in the
Sagami trough segment of the NAM-PHS plate interface. Their in-
version results show that the coseismic slip of the Kanto earthquake
extends from the northern end of the Sagami trough to the southern
tip of the Boso peninsula in the depth range of 5–25 km with a bi-
modal distribution of the 5 km-deep northwestern and 15 km-deep
southeastern peaks of about 8 m. The slip vectors are almost parallel
to the direction of plate convergence. The good agreement between
the coseismic slip pattern and the slip-deficit rate pattern obtained in
the present analysis suggests that most of tectonically accumulated
stress in the Sagami trough segment would be eventually released
by the occurrence of a forthcoming Kanto earthquake. From the
historical documents of tsunami in the Tokai district, Hatori (1976,
1977) have pointed out that the dynamic rupture of the 1854 Ansei–
Tokai earthquake (M8.4) reached the Suruga trough segment. So, in
this segment, the tectonic stress accumulated since 1854 would be
eventually released by the occurrence of a forthcoming Tokai earth-
quake (e.g. Ishibashi 1981). In the Izu–Mainland collision zone, on
the other hand, the accumulated tectonic stress would not be re-
leased by coseismic fault slip along the plate interface, but released
by intraplate inelastic deformation such as seismic and/or aseismic
slip on the active faults developed around the collision zone (Mat-
suda 1977; Terakawa & Matsu’ura 2010). From the estimation error
distribution in Fig. 8(a), we can say that the high slip-deficit rate
zones in the Sagami and Suruga trough segments are reliable, but the
30 km-deep slip-deficit rate peak in the Izu–Mainland collision zone
might be attributed to the imperfection of the slip-deficit model used
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Figure 7. The interseismic slip-deficit rate distribution inverted from GPS strain rate data. (a) The NAM-PHS plate interface. (b) The PHS-PAC plate interface.
The blue and red contours show slip-deficit and -excess rates at intervals of 10 mm yr−1, respectively. The thick arrows indicate slip-rate vectors on each plate
interface.

Figure 8. Estimation errors of the inverted slip-deficit rate distribution. (a) The NAM-PHS plate interface. (b) The PHS-PAC plate interface. The colour
scale indicates the estimation errors. The contours are shown at 10 mm yr−1 intervals. The outsides of the model regions are coloured by grey. The errors are
underestimated near the margins of the model regions.

in the present analysis, which cannot explain the intraplate inelastic
deformation.

The inversion result for the PHS-PAC plate interface shown in
Fig. 7(b) is not so reliable, because the estimation errors in Fig. 8(b)
are almost the same magnitude as the peak values of slip-excess
and -deficit rates. Nevertheless, the gentle slip-excess peak beneath
the eastern part of the Boso peninsula and the gentle slip-deficit
peak far southeast off the Boso peninsula seem to be significant.
The slip-excess zone beneath the eastern part of the Boso peninsula
might be related to ordinary high-seismic activity there. The slip-

deficit zone far southeast off the Boso peninsula might correspond
to the source region of the 1953 off Boso peninsula earthquake
(M7.4).

For reference, we show the dilatation and maximum shear strain
rates computed from the optimum slip-deficit rate distribution
in Figs 9(a) and (b), respectively. The computed strain rates in-
clude the effects of slip deficit at both the NAM-PHS and PHS-
PAC plate interfaces, but not the effects of steady plate subduc-
tion, which have been already subtracted from the original data.
From the comparison of Figs 9(a) and (b) with Figs 5(a) and (b),
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Figure 9. The horizontal strain rates computed from the inverted slip-deficit rate distribution. (a) Dilatation. (b) Maximum shear strain. The black bar in each
triangle indicates the direction of maximum horizontal contraction. The grey solid lines show the optimum triangular mesh constructed from GPS stations with
Delaunay triangulation.

Figure 10. The residual strain rates obtained by subtracting the theoretical strain rates in Fig. 9 from the observed strain rates in Fig. 5. (a) Dilatation. (b)
Maximum shear strain. The black bar in each triangle indicates the direction of maximum horizontal contraction. The grey solid lines show the optimum
triangular mesh constructed from GPS stations with Delaunay triangulation.

respectively, we can see that the inverted slip-deficit rate distri-
bution well explain the observed strain rates. In Fig. 10 we show
also the residual strain rates, obtained by subtracting the theoret-
ical strain rates in Fig. 9 from the observed strain rates in Fig. 5.
The residual strain rates are incoherent except the Tokyo Bay area
(central part of the Kanto region) covered by a thick sedimentary
layer.

4 D I S C U S S I O N

In Section 2.1, assuming the cyclic process of interseismic slip
deficit and subsequent coseismic slip, we derived an approximate
mathematical expression, eq. (14), for interseismic surface ve-
locities due to slip deficit at plate interfaces. This expression is
valid except the early stage of the earthquake cycle. In the early
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postseismic period, as shown in eq. (13), we need to consider the
effects of viscoelastic stress relaxation in the asthenosphere. From
eq. (14), we can see that interseismic surface deformation is caused
by not only steady slip-deficit increase in a seismogenic region but
also steady slip motion over the whole plate interface. Furthermore,
in the computation of interseismic surface deformation, we must
use the completely relaxed displacement response, namely the re-
sponse of an elastic plate floating on nonviscous liquid under grav-
ity, to both the steady slip motion and slip-deficit increase. In most
studies, however, the effects of steady slip motion at plate inter-
faces have been assumed to be zero, and the displacement response
for elastic half-space have been used to slip-deficit increase as an
approximation.

In the Kanto–Tokai region, Sagiya (1999, 2004) have estimated
slip-deficit rate distribution on the Suruga and Sagami trough seg-
ments from the inversion analyses of GPS velocity data for 1997–
1999 and 1996–2000, respectively. Henry et al. (2001) have also
estimated the interseismic locking depths and coupling ratios of
plate interfaces in central Japan, except the Izu–Mainland colli-
sion zone, from the inversion analysis of GPS strain data (1996–
1998). As shown in Fig. 3(b), the steady subduction of the PHS
plate beneath the NAM plate causes the large displacements of
GPS stations relative to the Mainland in the Izu peninsula. In the
analyses mentioned above, all the GPS data in the Izu peninsula
have been discarded instead of considering the effects of steady
plate subduction, and so they must have given up the estimation
of slip-deficit rates in the Izu–Mainland collision zone. The data
in the Izu peninsula are also crucial for the unbiased estimation
of slip-deficit rate distribution on the Suruga and Sagami trough
segments.

The relative motion of plates on the Earth’s surface is gener-
ally described by rigid body rotation about a specific Euler pole.
McCaffrey (2002) extended this idea to crustal block rotation and
applied to the inversion of GPS velocity data to simultaneously
estimate rigid block rotations and slip rates at block boundaries.
Wallace et al. (2004) demonstrated the effectiveness of McCaf-
frey’s approach through the inversion of GPS data in the North
Island of New Zealand. The simultaneous GPS velocity data inver-
sion for rigid block rotations and block-boundary slip rates will be
applicable if the geometries of tectonic block boundaries are well
defined as in the case of southwest Japan. In central Japan, however,
the causes of rigid block rotations are not only the simple slip mo-
tion at specific tectonic boundaries (Taira et al. 1992) but also the
brittle fracture and/or plastic flow at a number of defects spreading
over indefinite tectonic boundary zones (Sagiya et al. 2000; Noda
& Matsu’ura 2010). So, in this study, first, we calculated steady
slip motion at plate interfaces from a global plate motion model
(NUVEL1-A). Second, we computed the surface velocities due to
the steady slip motion as shown in Fig. 3(b). Third, we subtracted
the computed surface velocities from the observed GPS velocities
in Fig. 3(a) to obtain the residual velocities in Fig. 3(c). Then, finally,
we transformed the residual velocities into strain rates to remove the
rigid translation and rotation of crustal blocks caused by inelastic
deformation in ambiguous tectonic boundary zones.

To demonstrate the effectiveness of the displacement-strain trans-
formation, we tried to directly solve the observation equation for
residual velocities, eq. (23), with the same inversion formula and
same prior information as used in the analysis of strain rates. The
data errors eres in eq. (23) were simply assumed to be Gaussian
with zero mean and covariance matrix σ 2I, which means no corre-
lation between the data errors. In Figs 11(a) and (b), we show the
slip-deficit rate distribution on the NAM-PHS and PHS-PAC plate

interfaces, respectively, estimated from the direct inversion of GPS
velocity data with considering the rotation of the PHS plate relative
to the NAM plate but not the block rotation of the Izu peninsula.
From Fig. 11(a), we can find that a broad slip-deficit rate zone ex-
tends over the whole NAM-PHS plate interface with a ridge greater
than 60 mm yr−1 parallel to the Sagami trough. From Fig. 11(b),
we can also find a broad peak of high slip-excess rate (80 mm yr−1)
on the PHS-PAC plate interface. The 60-mm yr−1 slip-deficit rate
on the NAM-PHS plate interface is too large in comparison with
the steady subduction rate (30–40 mm yr−1) of the PHS plate ex-
pected from a global plate motion model (NUVEL-1A). On the
other hand, the slip-excess peak on the PHS-PAC plate interface
might be explainable if a large slow-slip event occurred there dur-
ing the observation period (1996–2000), but no such event has been
reported. So, from a seismotectonic point of view, this inversion
result is incomprehensible.

In Figs 12(a) and (b), we show the horizontal velocity fields repro-
duced from the results of GPS velocity data inversion (Fig. 11) and
strain-rate data inversion (Fig. 7), respectively. These velocity fields
include the effects of steady plate subduction in Fig. 3(b), and so we
can directly compare them with the observed GPS velocity field in
Fig. 3(a). From comparison of Figs 12(a) and (b) with Fig. 3(a), we
can see that the observed GPS velocity data are well explained by the
slip-deficit rate distribution inverted from velocity data but not that
from strain-rate data. In Fig. 12(c), we show the residuals obtained
by subtracting the velocities in Fig. 12(b) from those in Fig. 12(a)
together with the tectonic boundaries in the Izu–Mainland collision
zone (Taira et al. 1992). Here, the colour of triangular elements indi-
cates the rotation rates, ω̇12 in eq. (A2), calculated from the residual
velocities, which should not be ascribed to interseismic slip deficit
at plate interfaces. From theoretical consideration to rotation tensor
in Appendix, we may ascribe the residual velocities mainly to rigid
body translation and rotation of tectonic blocks; that is, the south-
southeastward translation of the Izu microplate, which suggests
plate convergence at the incipient subduction boundaries southeast
off the Izu peninsula (Taira et al. 1992), the anticlockwise rotation
of the south Kanto block, and the clockwise rotation of the Tokai
block.

As pointed out by Yagi & Fukahata (2008), the proper setting
of covariance matrices for data errors is crucial to obtain unbiased
estimates in inversion analysis. The data errors generally consist
of observation errors and modelling errors. In the case of GPS ve-
locity data, we may suppose the observation errors to be Gaussian
with zero mean and the covariance matrix σ 2

obsI. However, we have
no reliable information about the modelling errors, which come
from imperfection in theoretical models used for inversion analy-
sis. In this study, we used a fairly sophisticated dislocation model
considering the realistic 3-D geometry of plate interfaces and the
viscoelasticity of the asthenosphere, but even then there remain
some sources of modelling errors; rigid block translation and ro-
tation, surface topography, sedimentary layer thickness and so on.
Among them, the modelling errors due to rigid block translation
and rotation have certainly long-range correlation, and so should
be removed by transforming the GPS velocity data into strain rates.
Since the modelling errors due to the remaining sources would have
rather short-range correlation, we may suppose the covariance ma-
trix σ 2

modD of them to be diagonal. So, on the assumption of no
correlation between the observation errors and the modeling errors,
we expressed the covariance matrix σ 2E of total data errors in the
observation equation for GPS strain rates, eq. (24), in the form of
eq. (30); that is σ 2E = σ 2(RRT + c2D), where the first and second
terms on the right side are the covariance matrices of observation
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Figure 11. The slip-deficit rate distribution inverted from GPS velocity data on the assumption of no modelling errors. (a) The NAM-PHS plate interface. (b)
The PHS-PAC plate interface. The blue and red contours show slip-deficit and -excess rates at intervals of 20 mm yr−1, respectively. The thick arrows indicate
slip-rate vectors on each plate interface.

errors and modelling errors, respectively, and c2 is a parameter
that controls the relative weight of modelling errors to observation
errors.

In eq. (30) we can consider two extreme cases; that is c2 → 0 and
c2 → ∞. In the first case, where the theoretical model is assumed
to be perfect, the covariance matrix σ 2E tends to σ 2RRT. Since
the matrix RRT is not regular, we cannot use the inversion for-
mulae in Section 2.4. However, the observation equation for GPS
strain data, eq. (24), with the covariance matrix of σ 2RRT is es-
sentially the same as the observation equation for residual velocity
data, eq. (23), with the covariance matrix of σ 2I, and so the op-
timum solution in the case of c2 → 0 has been already given in
Fig. 11. In the second case, where the modelling errors are much
larger than the observation errors, the covariance matrix σ 2E tends
to σ 2c2D. In this case, since the matrix D is regular, we can use
the inversion formulae in Section 2.4. In Fig. 13, we show the
solution in the case of c2 → ∞. The optimum slip-deficit rate dis-
tribution in Fig. 7 is significantly different from that in the first case
(c2 → 0), but almost agrees with that in the second case (c2 → ∞).
This means that the proper treatment of modelling errors is cru-
cial in the analysis of interseismic GPS array data in the Kanto
region.

In this study, we have not treated the vertical components of GPS
velocity data. Although the observation errors of vertical compo-
nents are much larger than those of horizontal components, they
have also some information about crustal deformation due to in-
terseismic slip-deficit rates at plate interfaces. We can easily in-
corporate the vertical components into the strain data inversion by
transforming them to tilt rates, though mathematical formulation
will become more complicated. However, the vertical components
are essentially different from the horizontal components in terms
of systematic errors. There exists an absolute reference (geoid) for
vertical motion, but not for horizontal motion. Therefore, horizon-
tal velocity data inevitably include some rigid body translation and
rotation, which cause systematic errors as shown in this study. An-
other problem is the drastic change in thickness of the elastic litho-

sphere across island arcs. It would cause serious systematic errors
in theoretical response functions for vertical deformation, but not
for horizontal deformation, because the gravitational effect of flat-
tening an elastic plate strongly depends on its thickness. Thus, for
successful joint inversion of the vertical and horizontal components
of interseismic GPS array data, we need to resolve the problem of
systematic errors in vertical response functions.

5 C O N C LU S I O N S

In Section 2, assuming the cyclic process of interseismic slip deficit
and subsequent coseismic slip in seismogenic regions at a plate
interface, we obtained a theoretical expression to compute inter-
seismic surface velocities for given slip-deficit rate distribution,
which clearly shows that interseismic crustal deformation is caused
by not only slip-deficit increase in seismogenic regions but also
steady slip motion over the whole plate interface. On the basis of
this theoretical expression, we developed an inversion method to
estimate unbiased interseismic slip-deficit rates at plate interfaces
from observed GPS velocity data in the framework of Bayesian sta-
tistical inference theory. In this method, first, we subtract theoretical
surface velocities due to known steady relative plate motion from
the observed GPS data, and presume the residuals to be caused by
slip deficit at plate interfaces. However, the observed GPS data al-
ways include rigid block translation and rotation, which cannot be
explained by the slip-deficit model based on elastic dislocation the-
ory. We treated the rigid block translation and rotation as systematic
errors in the analysis, and removed them by transforming the veloc-
ity data into the average strain rates of triangle elements composed
of adjacent GPS stations. In Section 3, we demonstrated the appli-
cability of the strain data inversion method through the analysis of
interseismic GPS velocity data (1996–2000) in the Kanto region,
central Japan, where the NAM, PAC and PHS plates are interact-
ing with each other in a complicated way. From this analysis, we
found a broad and high slip-deficit rate zone on the NAM-PHS plate
interface, extending from southeast off the Boso peninsula to the
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Figure 12. Comparison of the horizontal velocity fields reproduced from the two inversion results. (a) The velocity field reproduced from the result of GPS
velocity data inversion in Fig. 11. (b) The velocity field reproduced from the result of GPS strain-rate data inversion in Fig. 7. In either case of (a) and (b),
the reproduced velocity field includes the effect of steady plate subduction. The solid circle indicates a reference point (YST) to represent velocity vectors. (c)
Difference between the velocity fields in (a) and (b). The colour of triangle elements indicates the rotation rates calculated from the residual velocities. The
coloured thick lines are tectonic boundaries in the Izu-Mainland collision zone (Taira et al. 1992).

Tokai region through the Izu–Mainland collision zone. Two high
slip-deficit rate zones along the Sagami and Suruga troughs corre-
spond to the source regions of the 1923 Kanto earthquake (M7.9)
and a potential Tokai earthquake, respectively. On the PHS-PAC
plate interface, though the estimation errors are large, we found a
moderate slip-deficit rate zone far southeast off the Boso peninsula,
where an M7.4 earthquake has occurred in 1953.
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Figure 13. The slip-deficit rate distribution inverted from GPS strain rate data on the assumption of no observation errors. (a) The NAM-PHS plate interface.
(b) The PHS-PAC plate interface. The blue and red contours show slip-deficit and -excess rates at intervals of 10 mm yr−1, respectively. The thick arrows
indicate slip-rate vectors on each plate interface.

was carried out with a supper-parallel computer at the Earth Simu-
lator Center, JAMSTEC. Computation for GPS strain data inversion
was carried out with a super computer at the Earthquake Research
Institute, the University of Tokyo.
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A P P E N D I X : E L I M I NAT I N G
S Y S T E M AT I C E R RO R S F RO M
G P S A R R AY DATA

Through GPS measurements we can determine the current coordi-
nates of observation points in a geodetic reference frame. The GPS
displacement data, which are the difference between the current and
previous coordinates of observation points, contain not only intrin-
sic deformation but also rigid block translation and rotation, which
cannot be explained by the slip-deficit models based on elastic dis-
location theory. If observed data contain theoretically unexplainable
coherent noise (systematic errors), the result of inversion analysis
will be seriously biased. So, we need to remove the rigid block
translation and rotation from GPS displacement data.

Representation of displacement fields in terms of strain

We consider the horizontal deformation of the Earth’s surface. As
geodetic reference frame, we take a Cartesian coordinate system
(x1, x2, x3) with the x3-axis pointing vertically upward. Then the
displacement field within a crustal block � is represented as

ui (x) = u′
i (x) + ci (i = 1, 2), (A1)

where the constant ci denotes the xi -component of rigid body trans-
lation of the block. The displacement gradients ∂ui/∂x j are inde-
pendent of the rigid body translation, and can be written in terms of
the strain tensor εi j and the rotation tensor ωi j , defined by

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
and

ωi j = 1

2

(
∂u j

∂xi
− ∂ui

∂x j

)
(i = 1, 2; j = 1, 2), (A2)

respectively, as

∂ui

∂x j
= εi j − ωi j (i = 1, 2; j = 1, 2). (A3)
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If the displacement u0
i and rotation ω0

i j (= −ω0
j i ) of a fiducial point

P0 at x = x0 in � are known, the displacement uk
i of an arbitrary

point Pk at x = xk in � are represented by the following line integral
along an arbitrary path connecting P0 and Pk :

uk
i = u0

i +
∫ Pk

P0

∂ui

∂x j
dx j = u0

i +
∫ Pk

P0

εi j dx j −
∫ Pk

P0

ωi j dx j

(i = 1, 2). (A4)

Now we divide the rotation tensor ωi j (x) into a spatially variable
part ω′

i j (x) and a spatially constant part γi j :

ωi j (x) = ω′
i j (x) + γi j (i = 1, 2; j = 1, 2). (A5)

According to Fung (1965, Section 4.6), the rotation tensor ωi j is
generally related with the strain tensor εi j by the following equa-
tion:

∂ωi j

∂xα

= ∂ε jα

∂xi
− ∂εiα

∂x j
(i = 1, 2; j = 1, 2; α = 1, 2). (A6)

Then, substituting eq. (A5) into the above equation, we obtain

∂ω′
i j

∂xα

= ∂ε jα

∂xi
− ∂εiα

∂x j
and

∂γi j

∂xα

= 0. (A7)

That is, the spatially variable part ω′
i j of rotation tensor is a function

of strain, but the spatially constant part γi j is independent of strain.
The rigid body rotation of the block � is realized if εi j (x) = 0 and
ωi j (x) = γi j over �, and so we call γi j (= −γ j i ) rigid block rotation
hereafter. On the other hand, ω′

i j should be called intrinsic rotation.
Substituting eq. (A5) into eq. (A4),

uk
i = u0

i − (xk
j − x0

j )γi j +
∫ Pk

P0

εi j dx j −
∫ Pk

P0

ω′
i j dx j , (A8)

integrating the last term on the right side of the above equation by
parts,

uk
i = u0

i − (xk
j − x0

j )(ω
′0
i j + γi j )

+
∫ Pk

P0

εi j dx j +
∫ Pk

P0

∂ω′
i j

∂xα

(x j − xk
j ) dxα, (A9)

and eliminating ω′
i j in terms of εi j with eq. (A7), we finally obtain

uk
i = u0

i − (xk
j − x0

j )ω
0
i j +

∫ Pk

P0

Uiα(x) dxα (i = 1, 2) (A10)

with

u0
i = u′0

i + ci (i = 1, 2), (A11)

ω0
i j = ω′0

i j + γi j (i = 1, 2; j = 1, 2), (A12)

and

Uiα(x) = εiα(x) + (xk
j − x j )

(
∂εiα(x)

∂x j
− ∂ε jα(x)

∂xi

)
(i = 1, 2; α = 1, 2). (A13)

If the fiducial point is located at some place with no intrinsic defor-
mation (u′0

i = 0 and ω′0
i j = 0), the above representation of displace-

ment field (Fung 1965, Section 4.6) becomes

uk
i = ci − (xk

j − x0
j )γi j +

∫ Pk

P0

Uiα(x) dxα (i = 1, 2). (A14)

That is, the effects of rigid block translation (ci ) and rotation (γi j )
on the displacement field cannot be eliminated even if we choose
the fiducial point at some place with no intrinsic deformation.

We consider the case in which the fiducial point P0 is in a crustal
block �1 and the target point Pk is in another contiguous crustal
block �2. In such a case, neglecting intrinsic deformation at P0 for
simplicity, we can represent the displacement at Pk by the following
line integral along a path crossing the block boundary at a point
Pb:

uk
i = c1

i − (xb−
j − x0

j )γ
1
i j +

∫ P−
b

P0

Uiα(x) dxα

+ 
ub
i − (xk

j − xb+
j )γ 2

i j +
∫ Pk

P+
b

Uiα(x) dxα. (A15)

Here, c1
i and γ 1

i j are the rigid body translation and rotation of the
block �1, γ 2

i j is the rigid body rotation of the block �2, and 
ub
i

denotes the offset at the block boundary. In a similar way, we can
easily extend the path integral representation of displacement field
to multiblock cases.

Elimination of systematic errors from GPS array data

As can be seen from eq. (A10), the displacement uk
i (i = 1, 2)

of an arbitrary point Pk depends on the unknown displacement
u0

i (i = 1, 2) and rotation ω0
12 (= −ω0

21) of a fiducial point P0. A
serious problem is that the effects of rotation ω0

12 increase with
the distance from the fiducial point. Now we consider a triangle

Pk Pl Pm composed of GPS observation points, Pk , Pl and Pm , as
shown in Fig. A1, where P0 indicates a fiducial point. Then, we
obtain similar expressions to eq. (A10) for the points Pl and Pm .
First, we eliminate the translation term u0

i by taking the difference
between uk

i and ul
i :⎧⎨

⎩
ul

1 − uk
1 = − sin θkl lklω

0
12 + ∫ Pl

Pk
U11 dx1 + ∫ Pl

Pk
U12 dx2

ul
2 − uk

2 = cos θkl lklω
0
12 + ∫ Pl

Pk
U21 dx1 + ∫ Pl

Pk
U22 dx2

, (A16)

where lkl and θkl denote the side length Pk Pl and its direction mea-
sured from the x1-axis, respectively. Next, we rotate the coordinate
system (x1, x2, x3) around the x3-axis by θkl anticlockwise so that
the x1-axis points to the direction of Pk Pl . In the new coordinate

Figure A1. Notation for the side lengths and angles of a triangle composed
of GPS stations. li j : The length of a side Pi Pj (i j = kl, lm, mk). θi j : The
angle between a side Pi Pj and the x1-axis. θi : The internal angle at a vertex
Pi (i = k, l, m). The dotted line indicates a path connecting the fiducial
point P0 and an arbitrary point Pk .
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system (x ′
1, x ′

2, x3), assuming locally homogeneous strain, eq. (A16)
can be written as⎧⎨
⎩

u′l
1 − u′k

1 = ∫ Pl

Pk
U ′

11dx ′
1

∼= lkl ε̄
′kl
11

u′l
2 − u′k

2 = lklω
0
12 + ∫ Pl

Pk
U ′

21dx ′
1

∼= lkl [ω0
12 + ε̄′kl

12 ]
, (A17)

where ε̄′kl
11 and ε̄′kl

12 represent the average of ε′
11 and ε′

12 over Pk Pl ,
respectively. From eq. (A17) we can see that the x ′

1-component of
the relative displacement vector (side-length change) gives simple
extension ε̄′kl

11 in the new coordinate system. On the other hand, the
x ′

2-component gives the inseparable composite of simple shear ε̄′kl
12

and rotation ω0
12 (Noda & Matsu’ura 2010).

In the analysis of GPS displacement data, we use only the x ′
1-

components, which correspond to the baseline-length changes in
trilateration. Instead of discarding the x ′

2-components, we combine
the changes of three side lengths 
li j (i j = kl, lm, mk) for the
triangle 
Pk Pl Pm to get complete information about its intrinsic
deformation, which can be written in the original coordinate system
as


li j = − cos θi j u
i
1 − sin θi j u

i
2

+ cos θi j u
j
1 + sin θi j u

j
2 (i j = kl, lm, mk). (A18)

In fact, given the side-length changes, we can determine three hori-
zontal strain components uniquely (e.g. Tsuboi 1932; Prescott et al.
1979; Feigl et al. 1990).

After eliminating the systematic errors due to rigid block trans-
lation and rotation, the observed data (side-length changes) still
contain the theoretically unexplainable deformation caused by brit-
tle fracture and/or plastic flow at a number of defects in the Earth’s
crust. The effects of theoretically unexplainable deformation are
cumulative and have long-range correlation in displacements as
shown in eq. (A10), but not in side-length changes as shown in
eq. (A17). Therefore, using side-length changes as data instead of
displacements, we can treat them as random errors in the analysis.

Transformation of displacement data into strains

On the assumption of locally homogeneous strain, Tsuboi (1932)
first obtained the explicit transformation formula from the hori-
zontal displacement components, u j

1 and u j
2, at the vertexes Pj

( j = k, l, m) of a triangle 
Pk Pl Pm into its horizontal strain com-

ponents, εklm
11 , εklm

12 and εklm
22 . We can rewrite his formula in a more

convenient form for error analysis:

⎛
⎜⎜⎜⎝

εklm
11

εklm
12

εklm
22

⎞
⎟⎟⎟⎠ = AklmBklm

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

uk
1

uk
2

ul
1

ul
2

um
1

um
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A19)

where Aklm and Bklm are the matrices defined by

Aklm = 1

lkl llmlmksksl sm

×

⎡
⎢⎢⎢⎣

−llmlmkslmsmksm −lmklkl smkskl sk −lkl llmskl slmsl

1
2 llmlmksmk+lmsm

1
2 lmklkl skl+mksk

1
2 lkl llmslm+kl sl

−llmlmkclmcmksm −lmklklcmkckl sk −lkl llmcklclmsl

⎤
⎥⎥⎥⎦

(A20)

and

Bklm =

⎡
⎢⎢⎣

−ckl −skl ckl skl 0 0

0 0 −clm −slm clm slm

cmk smk 0 0 −cmk −smk

⎤
⎥⎥⎦ (A21)

with

si = sin θi (i = k, l, m), (A22)

ci j = cos θi j , si j = sin θi j (i j = kl, lm, mk) , (A23)

and

si j+pq = si j cpq + ci j spq (i j = kl, lm, mk; pq = mk, kl, lm).

(A24)

Here, θi j denotes the angle between a side Pi Pj and the x1-axis,
and θi the internal angle at a vertex Pi (i = k, l, m) of the triangle

Pk Pl Pm .
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