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S U M M A R Y
The contact impedance of electrodes determines how much current can be injected into the
ground for a given voltage. If the ground is very resistive, capacitive electrodes may be an
alternative to galvanic coupling. The impedance of capacitive electrodes is often estimated
with the assumption that the halfspace is an ideal conductor. Over resistive ground at high
frequencies, however, the contact impedance will depend on the electrical properties, i.e.
electrical conductivity and permittivity, of the subsurface. Here, we review existing equations
for the resistance of a galvanically coupled, spherical electrode in a fullspace, and extend the
theory to the general case of a sphere in a spherically layered fullspace. We then develop a
method to calculate the impedance of a spherical disc over a homogeneous halfspace.

We carry out modelling studies to demonstrate the consistency of the algorithms and to assess
under which conditions the determination of the electrical parameters from the impedance
may be feasible. For a capacitively coupled electrode, the common assumption of an ideally
conducting fullspace (or halfspace) breaks down if the displacement currents in the fullspace
become as large as the conduction currents. For a moderately resistive medium with 1000 �m
this is the case for frequencies larger than 100 kHz. The transition from a galvanically coupled
disc to a disc in the air is continuous as function of distance. However, depending on the
electrical parameters and frequency, the impedance may vary by several orders of magnitude
within a few nanometers distance or less. We derive a simple equation to assess under which
conditions the impedance is independent of the electrode height, which may be important
for determining subsurface permittivity and conductivity in cases where control on the exact
geometry is difficult. Our theory is consistent with measured data obtained in a sandbox in the
laboratory.

Key words: Numerical solutions; Electrical properties; Electromagnetic theory; Glaciology;
Hydrogeophysics.

1 I N T RO D U C T I O N

DC resistivity measurements are usually carried out with four elec-
trodes. This way, the ratio between measured voltage and injected
current is independent of the grounding resistance of the electrodes.
However, the estimation of the electrode resistance may be impor-
tant in some situations. If the ground is very resistive, technical is-
sues such as maximum transmitter voltage and signal stability may
limit the current that can be injected into the ground. When trying
to decrease contact resistance, for example by watering electrodes,
the dependence on ground resistivity or geometry is important to
find an efficient strategy.

The capacitive resistivity technique uses capacitive electrodes,
which normally consist of sheets close to the ground with no direct
contact. They are used with an alternating current of high frequency
such that the impedance is sufficiently low. The method may be par-
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ticularly useful if the ground is very resistive and galvanic coupling
is not feasible, or if fast measurements with a moving system are to
be carried out (Kuras et al. 2007). The capacitive resistivity tech-
nique is also attractive to determine electrical parameters of small
bodies in the solar system from landers (Grard & Tabbagh 1991;
Seidensticker et al. 2007; Spitzer et al. 2008).

To estimate the contact impedance of capacitive electrodes, the
halfspace is often assumed to be an ideal conductor. For example,
Kuras et al. (2006) considered electrical conductivity and permittiv-
ity when calculating the transfer impedance of their four-electrode
configuration, but used the ideal-conductor approximation to es-
timate contact impedances. Over very resistive ground, however,
the assumption of an ideal conductor is no longer valid, and the
impedance of capacitive electrodes will also depend on electrical
conductivity and dielectric permittivity of the halfspace. This de-
pendence might in principle be used to determine the electrical
parameters directly from the contact impedance. In that case, the
sensitive depth range is controlled by the electrode size rather than
by their distance. Such measurements might be useful for very
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188 A. Hördt, P. Weidelt and A. Przyklenk

Figure 1. Sketch of the basic setup. Top panel: DC voltage applied to
galvanically coupled electrodes. Bottom: AC voltage applied to capacitively
coupled electrodes.

shallow penetration, or to supplement information that is obtained
from the standard 4-point transfer impedance. Dashevsky et al.
(2005) describe a system where the vertical derivative of the
impedance is used to evaluate asphalt pavement quality from elec-
trical permittivity. They solve the underlying equations numerically
and study the sensitivity of the measured impedance with respect to
parameters of a layered model.

The impedance of electrodes is treated to some extent in text-
books (e.g. Krajew 1957; Smythe 1968), and different solutions
were derived using approximations and electrode geometries with
particular applications or frequency ranges in mind (e.g. Wait &
Pope 1954; Maley & King 1961). Here, we study the impedance
of spherical and disc electrodes over a halfspace with respect to
geophysical applications, and discuss some properties relevant for
the design of measurement systems and the determination of sub-
surface parameters. We review existing equations for galvanically
coupled spherical electrodes in a fullspace and extend the theory
to capacitively coupled spheres. We derive a new semi-analytical
solution for the impedance of a circular disc electrode over a half-
space. We investigate under which conditions the measurement of
contact impedance might be feasible to determine conductivity and
dielectric permittivity of the ground, and thus might constitute an
alternative or useful supplement to conventional transfer impedance
measurements.

2 T H E O RY

The setup describing the problem to be solved is sketched in Fig. 1. A
DC or AC voltage is applied to galvanically coupled electrodes (top
panel) or an AC voltage to capacitively coupled electrodes (bottom
panel). The aim is to derive equations for the contact impedance Z,
required to calculate the current I from the applied voltage U via:

Z = U/I, (1)

where Z depends on resistivity for galvanic coupling, and on resis-
tivity and electric permittivity in the case of capacitive coupling.

2.1 Spherical electrode in a fullspace

The calculation of the impedance of arbitrary electrodes over a
halfspace depends on the shape of the electrodes and requires a nu-
merical solution (e.g. Rücker & Günther 2011). As a first step, we
consider the simple problem of a spherical electrode in a fullspace.
For this case, analytical solutions exist which are useful to obtain
physical insight and can be used to verify the numerical solution de-
rived later for circular disc electrodes. We assume a single electrode
with a given potential V0 with respect to infinity, surrounded by two

Figure 2. Sketch defining the parameters of a spherical electrode in a
two-layered halfspace.

shells, where the outer shell is infinitely thick. Both shells are char-
acterized by an electrical conductivity σ and dielectric permittivity
ε. The geometrical parameters are defined in Fig. 2. Krajew (1957)
calculated the impedance for the case of a DC current and galvanic
coupling. In that case, the impedance is real and is called resistance,
independent of the permittivities of the two shells:

R = 1

4π

(
1

σ2r1
− 1

σ1r1
+ 1

σ1r0

)
. (2)

The resistance of a two-electrode system, where the voltage
equals the potential difference between the two electrodes, can be
obtained by simply adding the resistances of the single electrodes,
provided that the distance between the electrodes is large compared
to their size. If they are close to each other, mutual influence of
the charges will affect the charge distribution on the electrodes, and
thus the impedances. The mutual influence provides an additional
term that decays with 1/L, where L is the electrode distance (Kra-
jew 1957; Smythe 1968). We will also use this approximation later
during the derivation of the impedance of a circular disc. Note that
there is nothing like a ‘resistance of the ground between the two
electrodes’, and the total impedance does not depend on the distance
between the electrodes as soon as the distance is large compared to
their size.

Eq. (2) can be extended to the AC case by introducing the complex
conductivity

σ̄ = σ + iωε, (3)

where ω is the angular frequency. For a spherical electrode, it can be
shown from Maxwell’s equations that the equation for the potential
V of the electric field is

∇ · (σ̄∇V ) = 0. (4)

This is the same equation that is used to derive eq. (2) except that
the real conductivity was replaced by its complex form. Therefore,
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Electrode impedance 189

the subsequent derivation also holds in the complex case, and the
resistance becomes a complex impedance written as:

Z = 1

4π

(
1

σ̄2r1
− 1

σ̄1r1
+ 1

σ̄1r0

)
. (5)

This equation may be used to calculate the impedance of a gal-
vanically coupled electrode, where σ 1 �= 0, or a capacitively coupled
electrode, where the medium surrounding the electrode would be
air. In the latter case, σ 1 = 0, and ε1 = ε0, where ε0 is the free-space
permittivity. If the fullspace surrounding the electrode (the second
medium) is sufficiently conductive, the common ideal conductor
assumption will hold, and the resistance will not depend on the
electrical parameters of the fullspace. This can be seen by writing
eq. (5) in the limit σ2 → ∞:

Z = r1 − ro

iωεo4πr0r1
, (6)

which is identical to the known equation for a spherical capacitor
(Smythe 1968).

2.2 Circular disc over a homogeneous halfspace

For a disc electrode over a homogeneous halfspace, the impedance
is equal to that of a plate capacitor, if the halfspace is conductive,
and the distance d between halfspace and disc is small compared to
the size of the disc (Smythe 1968):

Z = d

iωεo A
= 1

iωC
, (7)

where A is the area of the disc, and C is the capacitance. For arbitrary
distances and halfspace conductivities, no analytical solution in
compact form exists. We derive an integral equation and solve it
numerically for the case of an infinitely thin disc in the air or directly
on a conductive halfspace. The geometrical parameters are defined
in Fig. 3. The ideally conducting disc with radius a is parallel to
the surface at a height d above the surface. The coordinate system
is chosen with the origin at the centre of the disc. Harmonic time
dependence is assumed.

The strategy to find the impedance is to calculate the charge
on the disc for a given potential V0. The charge distribution will
be radially symmetric and may be described by a charge per unit
length density that depends only on the radial distance q(r). The
total charge Q is then obtained from

Q = 2π

a∫
0

q (s) ds. (8)

Having obtained Q, the complex capacitance can be calculated
from

C = Q

U
(9)

Figure 3. Sketch defining the parameters of a circular disc over a homoge-
neous halfspace. The radius is denoted by a, d is the electrode height, and
q(r) is the charge per unit length density on the disc.

and the complex impedance is obtained from eq. (7). The condition
of an infinite conductivity, and thus a constant potential on the disc,
means that the electric field is zero. The solution strategy is to ex-
press the radial electric field Er as function of q(r) using Maxwell’s
equations and determine q(r) such that Er vanishes anywhere on the
disc. The full derivation is given in the appendix, where we obtain
the following equations to determine q(r):

1

2ε0

a∫
0

sq (s) F (s, r ) ds = 0, (10)

where

F (s, r ) =
∞∫

0

u
[
1 − R (u) e−2ud

]
J0 (us) J1 (ur ) du. (11)

Here, the integration variable u is the spatial wavenumber and
J1 and J0 are Bessel functions, R(u) is a reflection factor which
depends on the electrical parameters of the halfspace, and is given
in the appendix.

Eq. (10) has to be solved under the condition that

1

ε0

a∫
0

sq (s) G (s)ds = V0, (12)

where

G (s) =
∞∫

0

(
1 − R (u) e−2ud

)
J0 (us) [J0 (ua) − J0 (u (L − a))] du.

(13)

The charge density is calculated as the solution of the linear equa-
tion system that is obtained from eqs (10) and (12) by discretizing
the disc along the radial direction. L is the distance between two
electrodes with L > 2a that may be chosen freely for the numer-
ical implementation. The only approximation that is made during
the derivation is that the radius of the disc is small compared to the
electromagnetic wavelength in free space, which does not constitute
a limitation in practical situations.

3 R E S U LT S

3.1 Galvanically coupled spherical electrode

The contact impedance of a galvanically coupled electrode based
on eq. (2) or others in similar form has been studied by several
authors, including different electrode shapes (e.g. Krajew 1957;
Rücker & Günther 2011). Here, we investigate the sensitivity of
the impedance with respect to the conductivity in the volume sur-
rounding the electrode. It is common practice to decrease contact
resistance by pouring water into the ground near the electrode, and
we may estimate the amounts of water and the conductivity con-
trast which is required to achieve a certain reduction in resistance.
We assume that the water fills a spherical shell of radius r1 and
increases the conductivity to σ 1 compared to σ 2 of the undisturbed
formation. The decrease of contact resistance may be expressed by
normalization with the fullspace value:

R

R0
= r0

r1
− σ2r0

σ1r1
+ σ2

σ1

, (14)
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Figure 4. Normalized electrode resistance as function of normalized ra-
dius of the conductive shell for different conductivity ratios between outer
fullspace and conductive shell. Note the logarithmic radius axis.

where

R0 = 1

4πσ2r0
(15)

denotes the resistance in a fullspace with conductivity σ 2. The
fullspace resistance is obtained from eq. (2) by setting r1 = r0,
and may be considered the case where no electrode watering was
applied.

Fig. 4 illustrates the reduction of electrode resistance by a con-
ductive spherical shell surrounding the electrode. The resistance
quickly decreases with the size of the conductive shell, but for radii
larger than 10 times the electrode size, a further increase is not
efficient any more. For example, for a conductivity contrast of 0.1,
an increase of the radius ratio from 10 to 100, corresponding to
a volume increase by a factor of 1000, will only decrease resis-
tance by a factor of 2. The impedance also saturates with respect
to conductivity contrast. Once a contrast of approx. 0.1 is reached,
a further decrease does not lead to a significant decrease of resis-
tance. For example, there is no need to use a highly saline solution of
100 S m−1 to decrease contact impedance if the medium is saturated
with 0.01 S m−1 fresh water; a 1 S m−1 solution would have the
same effect.

Eq. (14) is also useful to assess the contact resistance measure-
ment as a method to determine the resistivity of the subsurface.
Fig. 4 shows that mainly the range up to 10 times the electrode
radius determines the contact impedance, i.e. if the thickness of
the inner shell is larger than 10 electrode radii, a further increase
changes contact impedance only marginally. Thus, 10 electrode radii
may be considered an approximate sensitivity range.

3.2 Capacitively coupled circular disc

When designing a capacitive electrode, it is important to esti-
mate its impedance, because it will determine the magnitude of
the required voltage and the current that can be achieved. If the
ground is sufficiently conductive, the approximation of an ideal
conductor (eq. 7) may be used. Over resistive ground, the approx-
imation will not be valid any more. The transition is illustrated in
Fig. 5, which was generated by applying the numerical implemen-
tation of the scheme described in the theoretical section to calculate
the impedance of the circular disc. The figure shows the magnitude

Figure 5. Magnitude of the impedance of a capacitively coupled circular
disc electrode over a homogeneous halfspace vs. frequency, for different
conductivities (in S m−1) of the halfspace. Top panel: with a relative per-
mittivity of the halfspace fixed to εr = 4. bottom panel: εr = 100. The radius
of the disc is 0.2 m, the distance between disc and halfspace is 1 mm. The
upper and lower dashed curves denote the limits of infinite and zero halfs-
pace conductivities, which cannot be distinguished from the corresponding
finite values.

of the impedance vs. frequency for varying electrical conductivity
of the halfspace, for two different permittivities (4 and 100). The
upper dashed curve with extremely small conductivity corresponds
to the non-conducting case, where the coupling takes place purely
through displacement currents. If a relative permittivity of 1 had
been chosen (instead of 4 or 100), this would correspond to the
plate in the air.

The lower dashed curve denotes the case of an ideal conductor
with the 1/ω frequency dependence as described by eq. (7). In the
figure, it cannot be distinguished from the 1 S m−1 curve. If the half-
space is moderately resistive (i.e. σ = 10−3 S m−1), the impedance
starts to deviate from the ideal conductor limit at approx. 100 kHz.
For very small conductivities (i.e. σ 2 = 10−6 S m−1), the transition
starts at relatively low frequencies around 100 Hz. Of course, the
transition frequency corresponds to the point where displacement
currents start to become as large as conduction currents. Therefore,
in the lower panel, where a larger halfspace permittivity was chosen,
the transition starts at lower frequencies. Obviously, if a capacitive
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Electrode impedance 191

electrode system is used over permafrost areas, over very dry rock,
or on space missions landing on asteroids or comets, the ideal con-
ductor equations will break down, and the full equations have to be
used to estimate electrode impedance.

For simplicity, the relative permittivity of the ground was chosen
to be independent of frequency in Fig. 5. In reality, it varies with
frequency, and also depends on the composition and state (frozen
or unfrozen) of the material. In general, it decreases with frequency
within the range investigated here (e.g. Chelidze et al. 1999; Lesmes
& Morgan 2001; Stillman et al. 2010). The two values in the fig-
ure were chosen to illustrate the effect of changing permittivity,
with εr = 4 representing a lower extreme, and εr = 100 being a
more realistic value. When permittivity is increased, the influence
of conductivity on the impedance magnitude is diminished. The
curves move closer towards the ideally conducting case, because
the perfect coupling, where the contact impedance depends only on
geometry, can also be achieved through displacement currents. This
can also be seen from an approximate equation discussed further
below.

The distance to the ground is another important parameter of a
capacitively coupled electrode. With the ideal conductor approxi-
mation, the impedance magnitude increases linearly with distance.
However, this approximation will break down for small conductivi-
ties and large distances, and the full equations have to be considered.
Also, in the limit of zero distance, corresponding to an electrode on
the ground, the approximation predicts zero impedance, whereas
in reality it will have a finite value. Therefore, we display the
impedance magnitude vs. electrode distance for different ground
conductivities in Fig. 6. The frequency is 10 kHz, and two different
values of the relative permittivity (4 and 100) were chosen. The
impedances of the spherical electrode were calculated using the an-
alytical solution (eq. 5), those of the circular disc were calculated
by applying the numerical implementation.

We use both the analytical equation for a spherical electrode in a
fullspace and for a circular disc over a halfspace, in order to verify
the numerical implementation. The results cannot agree exactly
over the entire distance range, because the sphere and the disc are
fundamentally different systems. However, they agree in a range of
distances that depends on the normalization of the electrode surface.
Here, we chose the radii such that the surface of the spherical
electrode is equal to a single side of the disc. In this case, the results
should be identical in the intermediate distance range, if coupling to
the ground dominates over coupling to the air. The ideal conductor
approximation holds and the geometries may be compared through
eqs (6) and (7). Fig. 6 shows that the impedances of the disc and
sphere agree indeed in the intermediate range, which we consider
evidence for a successful numerical implementation.

At large distances, the disc and sphere electrodes converge to
their respective vacuum value. For a sphere with radius r0 this is
(Smythe 1968):

Z = 1

4π iωεor0

(16)

and for a disc with radius a:

Z = 1

8iωεoa
(17)

If a = 2r0, as we adopted for the calculation in Fig. 6, the vacuum
impedance of the disc is smaller than that of a sphere, because with
this normalization the two-sided surface of the disc is larger.

In the limit of small distances, the comparison depends on the
conductivity and permittivity of the medium. For moderate con-

Figure 6. Impedance magnitude of the capacitively coupled spherical and
circular disc electrode vs. distance to the surrounding sphere/halfspace,
respectively. The solid lines indicate the impedance of the spherical electrode
in fullspace, with radius 0.05 m. The dashed lines are the impedance of the
circular disc electrode with radius 0.1 m. The frequency is 10 kHz, the
relative permittivity of the subsurface is εr = 4 (top panel) and εr = 100
(bottom panel).

ductivities (σ = 10−4 and 10−1 S m−1), the impedance magnitude
converges towards the value of a disc with zero distance, i.e. direct
contact, given by

Z = 1

4πσ̄r0

(18)

for the sphere and

Z = 1

4a

1

σ + iω (ε0 + ε1)
(19)

for the disc.
In this case, the impedance of the disc is a little larger than that

of the sphere if the contact surfaces are the same (a = 2r0). For very
large conductivities in the range of metal (σ = 106 S m−1), the limit
is not reached even at extremely small finite distances. For zero
conductivity the coupling takes place through displacement cur-
rents only. The impedance decreases with distance, because εr > 1
was chosen and the halfspace/fullspace contributes to the coupling.
The dependence on permittivity, i.e. the difference between the two
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panels in Fig. 6, is only visible for small to moderate conductivities
(σ = 0 and 10−4 S m−1). With increasing permittivity, the lower
limit of the impedance magnitude decreases.

In summary, all curves show the expected behaviour. In the inter-
mediate distance range, only the areas of the electrodes facing the
halfspace/fullspace are relevant. In the limit of very large and very
small distances, the analytical values of vacuum and galvanically
coupled electrode are reached, which are different for a sphere and
a disc.

Two important conclusions are illustrated in Fig. 6. First, the
impedance increases monotonically with distance. This includes the
case of a galvanically coupled electrode touching ground. There-
fore, an electrode in the air can not have a smaller impedance than
that of the same electrode lying on the ground. Second, the transi-
tion from a galvanically coupled electrode towards a capacitively
coupled electrode is continuous. This might be counterintuitive;
one could expect a jump in impedance when the electrode is lifted
from the ground. The behaviour can be understood by consider-
ing the total impedance as the sum of two components: the ground
impedance of a touching electrode, and the impedance of the space
between electrode and ground that must be overcome by capaci-
tive coupling. The latter continuously vanishes for small distance.
However, Fig. 6 also shows that, depending on the electrical param-
eters of the ground, the transition may take place at extremely small
spatial scales less than an atomic radius, and thus will appear as a
discontinuity in experiments, depending on their spatial resolution.

For a spherical electrode, the interpretation of the impedance as a
series connection between the ground impedance and the capacitive
coupling becomes directly obvious from eq. (5), which may also be
written as:

Z = 1

4πσ̄2r1
+ r1 − ro

iωεo4πr0r1
(20)

This suggests that at small distances, the impedance of the circular
plate may be written in a similar form:

Z = 1

4a (σ + iω (ε0 + ε1))
+ d

iωε0πa2
(21)

where the first term represents the grounding impedance and the
second the ideal conductor capacitive coupling impedance. Indeed,
eq. (21) is a good approximation in the range d � a in Fig. 6.

Eq. (21) is also useful to understand the difference between the
two panels in Fig. 5 discussed earlier. When permittivity (ε1) is
increased, the first term in eq. (21) decreases and the curves converge
towards the second term, the ideally conducting limit.

The interpretation of the electrode impedance as a sum of a
‘grounding impedance’ and the capacitive coupling does not con-
tradict the statement made earlier that no additional impedance of
the space ‘between the electrodes’ exists. Eqs (20) and (21) are valid
for single electrodes, and the impedance of a two-electrode system
can be obtained by superposition, which constitutes a complete
description.

When attempting to determine the electrical parameters of the
ground from the contact impedance, for example to supplement
conventional measurements with a four-electrode configuration, we
have to distinguish two situations. If the electrode has a direct con-
tact (d = 0), conductivity and permittivity may directly be calculated
from the real and imaginary parts. Depending on the magnitude of
displacement and conduction currents, it may be possible to de-
termine only one of the parameters. For example, if conduction
currents are large (σ	ωε), the magnitude of the impedance will

depend on conductivity only, and the phase shift might be too small
to be measured.

The ideal case of d = 0 will rarely be fulfilled, because either a
capacitive electrode at finite distance from the ground is used, or
not all parts of an electrode will be touching ground. In that case,
the electrical parameters can still be determined from the contact
impedance if the distance is so small that the impedance does not
depend on it, i.e. the measurements are carried out in the asymptotic
range at the left side of Fig. 6. This range will also determine the
maximum thickness that should be used for the insulation of a
capacitive electrode, or the maximum spatial scale of roughness of
the electrode contact. A condition can be derived from eq. (21) by
requesting that the magnitude of the second term is small compared
to the first, resulting in:

d << a
π

4

√
1(

σ

ωε

)2 + (1 + εr )2
, (22)

where εr is the relative permittivity of the halfspace. For example,
for the parameters chosen for Fig. 6 (top panel), and σ = 0.1 S m−1,
eq. (22) yields d � 4·10−7 m, corresponding to the transition zone
for the 0.1 S/m curve. For σ = 0, eq. (22) yields, d � 0.015 m,
which defines the transition zone of the 0 S m−1 curve. In general,
over resistive ground the impedance is less sensitive to electrode
distance than over conductive ground.

3.3 Comparison with measured data

We carried out preliminary contact impedance measurements with
a prototype impedance spectrometer built by Lippmann Geo-
physikalische Messgeräte (LGM), particularly designed to measure
large impedances at four frequencies between 100 Hz and 100 kHz.
The measurements were carried out in a box filled with dry sandy
gravel with dimensions 1.2 m × 1.2 m × 0.8 m. The resistivity
of the material was determined to be approx. 25 k�m with a con-
ventional four-electrode system; the permittivity is unknown. The
two electrodes consist of circular plates of 6.5 cm radius, and a
50-μm thick insulation. Fig. 7 shows the measured single-electrode

Figure 7. Measured impedance magnitudes (squares), for a system consist-
ing of two circular electrodes with 50-μm insulation pressed on dry sandy
gravel. The lines are theoretical curves calculated for varying distance to
the ground (given in m). The assumed ground resistivity is 25 k�m, and
the frequency-dependent permittivity is defined by εr = 106 f−1, where f is
given in Hz.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/193/1/187/735167 by guest on 17 April 2024



Electrode impedance 193

impedance magnitudes, obtained as half of the total impedance,
compared with theoretical curves calculated for different assumed
distances between the ground and the electrodes.

The comparison between measured and calculated data is not
trivial, because important parameters are not known or not easy to
determine. The insulated electrodes were touching the sand, but it
turned out that the impedance depends on the pressure at which the
electrode is pushed down. This is probably because the geometry
of the sand grains is changed when pressing, and distance changes
in the hundreds of micrometer range are relevant. To compare with
calculated data, where a planar surface is assumed, one would have
to work with an effective distance, which is probably slightly larger
than the thickness of the insulation (5 × 10−5 m). Also, the permit-
tivity of the material is unknown and frequency-dependent and may
vary by several orders of magnitude in the considered frequency
range. We chose a function of εr = 106 f−1, where f is given in
Hz, as a rough estimate according to the corresponding literature
(e.g. Lesmes & Morgan 2001). Considering those uncertainties,
theoretical and measured data compare quite well.

The dependence of the impedance on distance for the theoretical
data, and on pressure for the measured data, means that it would
actually be difficult for this parameter set to estimate electrical
parameters by inversion. The fact that the influence of distance
increases at low frequencies is solely due to the assumed frequency-
dependence of permittivity, which can be seen from eq. (22). For
the chosen parameters, the first term under the square root can be
neglected against the second one, and the threshold below which
distance becomes unimportant is:

d � a

εr ( f )

π

4
. (23)

This yields 5μm at 100 Hz. At this frequency the selected
distances in the figure do not fulfill the condition (23), and the
impedance depends on distance. At 100 kHz, the equation yields 5
mm, and the condition (23) is fulfilled except for the larges selected
distance (1 mm). Therefore, the largest frequency would be best
suited to estimate electrical parameters. The example illustrates that
careful choice of measurement parameters is recommended when
attempting to estimate electrical properties from contact impedance.

4 C O N C LU S I O N S

We investigate the behaviour of the contact impedance of electrodes
using analytical equations for spherical electrodes in a fullspace, and
for a thin circular disc over a homogeneous halfspace. For the disc
model, we have developed a numerical algorithm based on the full
solution of Maxwell’s equations. We use the approximation that the
radius of the disc is small compared to the electromagnetic wave-
length in free space. This will break down only for extremely high
frequencies and large discs, and does not constitute a limitation in
most practical situations. The code was verified by comparison with
an analytical solution for a spherical electrode, and with asymptotic
solutions reached in the limit of small and large distances to the
halfspace. We also compared the results with measured data and
obtained a reasonable agreement considering uncertainties in the
parameters of the experiment.

For a galvanically coupled, spherical electrode at DC we studied
the sensitivity of electrode resistance for a two-layer case with re-
spect to layer thickness and conductivity ratio. We found that there
is a saturation effect with respect to the conductivity of the first
layer, i.e. when trying to improve contact resistance by watering
the electrode, there is a maximum fluid conductivity beyond which

the resistance cannot be further improved. We also found that the
sensitivity range when trying to determine the halfspace resistivity
from impedance measurements, is approx. 10 electrode radii.

For capacitively coupled electrodes, the common assumption of
an ideal conductor breaks down for resistive ground and high fre-
quencies. Depending on electrode size and geometry, the electrode
impedance may be underestimated by two orders of magnitude if
the finite conductivity is neglected.

The transition between the impedance of a capacitively coupled
disc and a galvanically coupled disc lying on the ground is con-
tinuous as function of distance. Depending on the subsurface pa-
rameters, however, the transition may take place at extremely small
distances in the order of an atomic radius, and thus will appear as a
discontinuity in practice. The magnitude is monotonically increas-
ing with distance, which means that the impedance of a capacitively
coupled electrode can never be smaller than that of the same elec-
trode lying on the ground. In practice, it may still be useful to insulate
an electrode. For example, for a moving system, the large impedance
variations with distance may cause problems for the electronics, in
which case an insulation will stabilize the impedance.

The measurement of ground parameters is normally carried out
with four-electrode arrays, not only on earth, but also on planetary
probes (e.g. Hamelin et al. 2004; Seidensticker et al. 2007). The
four-electrode transfer impedance does not depend on the contact
impedance of the electrodes, provided that the contact impedances
are small compared to the input impedance of the electronics. Here,
we provide some simple tools to estimate contact impedances for
a wide range of conditions, which may help to design electrodes
such that difficulties with the electronics might be avoided. In addi-
tion, the contact impedance itself might be used to estimate ground
parameters, either as a standalone system for shallow investiga-
tion in the range of electrode size, or as supplementary informa-
tion for four-electrode arrays. The extra effort to measure contact
impedances of an existing four-electrode array should be marginal
compared to the initial expenses, in particular for planetary probes.
In most cases, only a single four-electrode array will be used, and
therefore the depth resolution obtained by using contact impedances
might be extremely useful.

The estimation of ground parameters from the impedance may be
disturbed by the dependence of the impedance on electrode height.
We derived a simple rule for the maximum distance below which
this dependence vanishes and where ground parameters can be de-
termined without knowledge of electrode distance above ground.
In the experiment we carried out to verify our numerical code,
we probably did not reach this range due to the large values of
frequency-dependent electrical permittivity, which dominates the
corresponding equation.

The measured impedance is also influenced by internal capac-
itances of the measurements system. In our experiments we cal-
ibrated the configuration in the air, whereas Dashevsky et al.
(2005) suggested to measure the vertical gradient of the contact
impedance. They also used 3-D numerical modelling to calculate the
impedance of the entire system. Such complex simulations might in
future be supported or verified by our analytical and semi-analytical
solutions.
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A P P E N D I X : I M P E DA N C E O F A
C I RC U L A R D I S C OV E R A
H O M O G E N E O U S H A L F S PA C E

A1 Basic equations

In order to calculate the electric field on the circular disc, we solve
Maxwell’s equations in cylindrical coordinates. Ampere’s law for
harmonic time dependence yields:

σE + ∂εE

∂t
= (σ + iωε) E = σ̄E = ∇ × H (A1)

with electric and magnetic fields E and H. The electrical conduc-
tivity and permittivity depend only on the vertical coordinate z. For
symmetry reasons, the electric field only has a vertical and a ra-
dial component, which depend only on r and z. The magnetic field

only has a tangential component Hϕ that only depends on r and z.
Therefore, from eq. (A1) we obtain for the remaining components:

σ̄ Er = −∂ Hϕ

∂z
, (A2)

σ̄ Ez = 1

r

∂
(
r Hϕ

)
∂r

. (A3)

Similarly, from the law of induction:

− ∂B

∂t
= ∇ × E, (A4)

we obtain:

− iωμ0 Hϕ = −∂ Ez

∂r
+ ∂ Er

∂z
, (A5)

where μ0 is free-space magnetic permittivity. Substitution of (A2)
and (A3) into (A5) yields an equation for Hϕ :

∂r

(
1

r
∂r

(
r Hϕ

)) + σ̄ ∂z

(
1

σ̄
∂z Hϕ

)
= iωμ0σ̄ Hϕ. (A6)

Here and subsequently we use the notation ∂r = ∂

∂r for simplicity.
The left hand side of eq. (A6) suggests a separation of variables

by means of a first order Bessel function, with wavenumber u:

Hϕ (r, z) = f (z, u) · J1 (ur ) . (A7)

Because the Bessel function fulfils Bessel’s differential equation

∂r J1 (ur )

r
+ ∂2

r J1 (ur ) − 1

r 2
J1 (ur ) = −u2 J1 (ur ) (A8)

it follows from (A7) that

∂r

(
1

r
∂r

(
r Hϕ

)) = −u2 Hϕ. (A9)

The full solution of (A6) may thus be represented by an integra-
tion over all wavenumbers:

Hϕ(r, z) =
∞∫

0

f (z, u)J1 (ur ) du. (A10)

From Ampere’s law (A2 and A3) we directly obtain equations for
the components of the electric field:

Er (r, z) = −1

σ̄

∞∫
0

∂ f (z, u)

∂z
J1 (ur ) du, (A11)

Ez(r, z) = 1

σ̄

∞∫
0

u f (z, u) J0 (ur ) du. (A12)

A2 Calculation of f(z,u)

If we substitute eq. (A10) in eq. (A6) it follows from eq. (A9) that
f(z,u) must fulfil:

σ̄ ∂z

(
1

σ̄
∂z f

)
= α2 f, (A13)

where

α2 = iωμ0σ̄ + u2. (A14)

The electric field eq. (A12) has to be solved under the boundary
conditions at layer boundaries and the source condition, which is
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implemented by a jump in the vertical component of the electric
field at the disc:

[Ez (r )]+− = q (r )

ε0
, (A15)

where []+− denotes the difference of the field immediately above and
below the disc, i.e. the jump in the field:

[E]+− = E
(
z = 0+) − E

(
z = 0−)

. (A16)

To derive a condition for f(r,z), we transform eq. (A15) into the
wavenumber domain by eq. (A12) and obtain:

[Ez(r, z)]+− = 1

σ̄0

∞∫
0

u [ f (z, u)]+− J0 (ur ) du =
{ q(r )

ε0
, 0 ≤ r ≤ a

0, r > a
,

(A17)

where σ 0 is the free-space conductivity. The charge density q(r)
may be transformed to the wavenumber domain through the Hankel
transform pair:

q̃ (u) =
∞∫

0

uq (r ) J0 (ur ) dr, (A18)

q (r ) =
∞∫

0

uq̃ (u) J0 (ur ) du, (A19)

where q̃ (u) is the charge density in the wavenumber domain.
By substituting eq. (A19) into (A17) it becomes obvious that

[ f (z, u)]+− = σ̄0

ε0
q̃ (u) (A20)

is the boundary condition describing the source in the wavenumber
domain.

Eq. (A13) has to be solved under the boundary condition (A20).
Solutions will be linear combinations of functions of the form e±αz ,
where the different values of α in the lower halfspace and in the
air have to be considered. This suggests the following Ansatz for
f(z,u):

f (z, u) =

⎧⎪⎪⎨
⎪⎪⎩

−Ae+α0z + Be+α0z, z < 0

+Ae−α0z + Be+α0z, 0 < z < d

Ce−α1z, z > d

, (A21a,b,c)

where

α2
0 = iωμ0σ̄0 + u2 and α2

1 = iωμ0σ̄1 + u2 (A22a,b)

are the corresponding parameters in the air and in the halfspace.
The signs of the exponents in eq. (21) result from the request that
f(z,u) has to vanish at infinity in both directions. The constants
A, B and C can be determined from the source condition (A20)
and the continuity conditions for the electromagnetic fields at layer
boundaries, which mean that f and 1

σ̄

∂ f
∂z have to be continuous. For

example, it follows from (A21a,b), that

f
(
z = 0−) = B − A

f
(
z = 0+) = A + B

. (A23a,b)

And thus for the jump of f at z = 0:

[ f (z, u)]+− = f
(
z = 0+) − f

(
z = 0−) = 2A. (A24)

With eq. (A20), we obtain for constant A:

A = σ̄0

2ε0
q̃ (u) . (A25)

The calculation of B and C is also straightforward but requires a
little more algebra that is omitted here. The final result for f is:

f (z, u) = σ̄0

2ε0
q̃ (u)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e+α0z + R (u) eα0(z−2d), z < 0

e−α0z + R (u) eα0(z−2d), 0 < z < d

T (u) e−α1(z−d)e−α0d , z > d

(A26a,b,c)

with reflection and transmission factors:

R (u) = α0 (u) σ̄1 − α1 (u) σ̄0

α0 (u) σ̄1 + α1 (u) σ̄0
, (A27)

T (u) = 2α0 (u) σ̄1

α0 (u) σ̄1 + α1 (u) σ̄0
. (A28)

With eq. (A26)–(A28) and (A10)–(A12) we could in principle
calculate all field components. However, in order to calculate the
charge density on the disc, we need only the equation for Er between
the halfspace and the disc. In the following, we approximate α

between the halfspace and the disc by the wavenumber u, i.e.:

α2
0 = u2 + ω2μ0ε0 = u2 + ω2

c2
≈ u2, (A29)

where c is the vacuum speed of light. The approximation is justi-
fied, because the minimum relevant wavenumber umin is given by
the inverse size of the disc, which is large compared to the electro-
magnetic (EM) wavenumber in free space (i.e. the second term on
the R.H.S. of eq. (A29). For example, even for a large electrode with
1m radius operating at a maximum frequency of 10 MHz, the ratio
between EM wavenumber and umin is only 0.04.The equation for Er

is obtained from (A26b) and (A12), considering that the derivative
with respect to z gives a multiplication with u:

Er (r, z) = 1

2ε0

∞∫
0

uq̃ (u)
[
e−uz − R (u) eu(z−2d)

]

×J1 (ur ) du, 0 ≤ z ≤ d. (A30)

A3 Calculation of the charge density

To calculate the charge density, we utilize the condition that the
radial electric field has to vanish on the disc. Thus, we need the field
at z = 0:

Er (r, z = 0) = 1

2ε0

∞∫
0

uq̃ (u)
[
1 − R (u) e−2ud

]
J1 (ur ) du. (A31)

The idea is to find a charge distribution that fulfils Er = 0 for any
r. If we substitute the tranformation of the charge density (eq. 18)
into eq. (A31), we obtain:

1

2ε0

∞∫
0

a∫
0

sq (s) J0 (s)u
[
1 − R (u) e−2ud

]
J1 (ur ) duds = 0 (A32)

with the new integration variable s. One may write eq. (A32) more
compactly by defining the function

F (s, r ) =
∞∫

0

u
[
1 − R (u) e−2ud

]
J0 (us) J1 (ur ) du (A33)
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Figure A1. Geometry of the transmitting system consisting of two identical
discs. The distance between the midpoints is L, the radius of the discs is a.

to obtain

1

2ε0

a∫
0

sq (s) F (s, r ) ds = 0. (A34)

The function F(s,r) may be directly calculated for any s and
r. For numerical implementation, the disc may be discretized and
with discrete values we obtain a matrix F. Eq. (A34) then becomes
a system of linear equations:

F · q = 0, (A35)

where the entries into vector q represent the unknown charge density
distribution. However, q is not yet completely defined by eq. (A35),
because it has a trivial solution q = 0. The potential of the disc has
to be included as a further constraint to obtain a finite charge. One
possibility to include the potential is to consider a system consisting
of two identical discs (Fig. A1).

Integration of Er along the line connecting the midpoints of the
two discs yields the applied voltage V0. Since Er = 0 on the discs,
this is:

V0 =
L−a∫
a

[Er (r, 0) + Er (L − r, 0)] dr = 2

L−a∫
a

Er (r, 0) dr . (A36)

Er(r,0) is given by eq. (A31) and can be substituted directly.
Carrying out the integration over r, we obtain:

V0 = 2

L−a∫
a

1

2ε0

∞∫
0

uq̃ (u)
[
1 − R (u) e−2ud

]
J1 (ur ) dudr

= 1

ε0

∞∫
0

uq̃ (u)
(
1 − R (u) e−2ud

)⎡
⎣ L−a∫

a

J1 (ur )dr

⎤
⎦ du

= 1

ε0

∞∫
0

q̃ (u)
(
1 − R (u) e−2ud

)
[J0 (ua) − J0 (u (L − a))] du

(A37)

In order to define an explicit discretization, the charge density is
written in space domain, and the equation is written as:

V0 = 1

ε0

∞∫
0

a∫
0

sq (s)J0 (us) ds
(
1 − R (u) e−2ud

)

×[J0(ua) − J0(u(L − a))]du

= 1

ε0

a∫
0

sq (s) G (s)ds

,

(A38)

where

G (s) =
∞∫

0

(
1 − R (u) e−2ud

)
J0 (us) [J0 (ua) − J0 (u (L − a))] du

(A39)

is a new function that can be calculated for any s. Again, eqs (A38)
and (A39) are discretized and converted into a linear equation sys-
tem of the form:

q · G = V0. (A40)

Eq. (A40) is the inhomogeneous condition that is required to
exclude the trivial solution. Any value for V0 may be chosen to
obtain a charge density distribution q(r) by solving eq. (A35) under
the condition (A40). The total charge is obtained from eq. (8) of
the main section, and the capacitance from eq. (9). Although the
distance between the discs L appears as a parameter in the equations,
the solution does not depend on the choice and any value L > 2a
may be chosen for the numerical implementation.

For a system consisting of two discs, the solution is valid only
at sufficient distance of the two discs, because the mutual influence
was not considered here. The capacitance of the electrode C is
complex, because the reflection factor in eq. (A27) is complex. The
complex electrode impedance may be calculated via

Z = 1

iωC
. (A41)
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