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S U M M A R Y
A new numerical technique for solving 2-D elastodynamic equations based on a finite-volume
frequency-domain approach is proposed. This method has been developed as a tool to perform
2-D elastic frequency-domain full-waveform inversion. In this context, the system of linear
equations that results from the discretization of the elastodynamic equations is solved with a di-
rect solver, allowing efficient multiple-source simulations at the partial expense of the memory
requirement. The discretization of the finite-volume approach is through triangles. Only fluxes
with the required quantities are shared between the cells, relaxing the meshing conditions,
as compared to finite-element methods. The free surface is described along the edges of the
triangles, which can have different slopes. By applying a parsimonious strategy, the stress com-
ponents are eliminated from the discrete equations and only the velocities are left as unknowns
in the triangles. Together with the local support of the P0 finite-volume stencil, the parsimo-
nious approach allows the minimizing of core memory requirements for the simulation. Effi-
cient perfectly matched layer absorbing conditions have been designed for damping the waves
around the grid. The numerical dispersion of this FV formulation is similar to that of O(�x2)
staggered-grid finite-difference (FD) formulations when considering structured triangular
meshes. The validation has been performed with analytical solutions of several canonical prob-
lems and with numerical solutions computed with a well-established FD time-domain method
in heterogeneous media. In the presence of a free surface, the finite-volume method requires
10 triangles per wavelength for a flat topography, and fifteen triangles per wavelength for more
complex shapes, well below the criteria required by the staircase approximation of O(�x2)
FD methods. Comparisons between the frequency-domain finite-volume and the O(�x2)
rotated FD methods also show that the former is faster and less memory demanding for a
given accuracy level, an attractive feature for frequency-domain seismic inversion. We have
thus developed an efficient method for 2-D P–SV -wave modelling on structured triangular
meshes as a tool for frequency-domain full-waveform inversion. Further work is required to
improve the accuracy of the method on unstructured meshes.
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1 I N T RO D U C T I O N

Seismic wave propagation has been investigated using various numerical methods, such as finite-difference (FD), finite-element (FE) and

boundary integral equations. When considering media with complex topography and a possible water layer, few approaches are available for

efficient forward modelling, especially when the modelling scheme is dedicated to seismic full-waveform inversion applications that require

thousands of forward modelling stages. The FD staggered-grid method proposed by Madariaga (1976) and Virieux (1986a) using the Yee

scheme (Yee 1966), which is based on a first-order velocity–stress hyperbolic system, is relatively popular and has been used intensively

in the time domain for seismic imaging in spite of the limited solution accuracy when considering free surfaces with topography (Gauthier

et al. 1986). The solution has been shown to be stable when considering fluid zones inside the FD grid. The staircase approximation of the

free surface, as proposed by Robertsson (1996), requires dense meshing. Recently, attempts have been proposed through mesh deformation

(Hestholm & Ruud 2002) and through immersed implicit boundary methods (Lombard et al. 2008), although these need specific numerical

developments near to the free surface.
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The FE approaches, as proposed for elastic wave propagation by Marfurt (1984), have been reshaped recently with low-order interpolation

for efficient 3-D simulations (Bielak et al. 2003; Yoshimura et al. 2003; Koketsu et al. 2004), while recent high-order interpolations have

led to the so-called spectral element method (Faccioli et al. 1997; Komatitsch & Vilotte 1998; Chaljub et al. 2003; Vilotte et al. 2005). Both

of these approaches with different mesh densities have allowed accurate modelling of free surface effects, as these FE methods adapt the

mesh to the surface topography. Moczo et al. (1997) have proposed the combination of FD and FE methods to deal efficiently with complex

topographies. Due to the weak formulation of these methods, the fluid–solid interface has to be tackled by explicit boundary conditions.

Other numerical methods have tried to avoid the necessary continuity of fields at shared nodes between elements, which has led to

unconventional FE methods (Casadei et al. 2002) and to discontinuous Galerkin (DG) methods (Cockburn et al. 2000), which have been

popularized in seismology by Dumbser, Käser and co-workers (Dumbser & Käser 2006; Käser & Dumbser 2006; de la Puente et al. 2007;

Dumbser et al. 2007; Käser et al. 2007). Both methods are particularly demanding of computer resources. Explicit boundary conditions have

been worked out for fracture problems by BenJemaa et al. (2007) for a low-order interpolation of the DG method, which is nothing more than

a FV method with constant value interpolation inside each element. These FV/DG methods work in the time domain using both velocity and

stress fields, with very promising perspectives.

The aim of this study is to develop a frequency-domain modelling method that is suited to seismic imaging applications performed by

frequency-domain full-waveform inversion. The above-mentioned methods may not be the optimal ones for this kind of application, for the

reasons explained below. With the success of full-waveform inversion in the frequency domain (Pratt & Worthington 1990; Pratt et al. 1996,

1998), applications to real data using the acoustic approximation for 2-D geometries have been performed for imaging complex structures

(Ravaut et al. 2004; Operto et al. 2006), while the reconstruction of elastic parameters has been found to be a quite challenging problem (Gelis

et al. 2007). These approaches are based on a hierarchical multiscale inversion scheme that proceeds over a coarse subset of frequencies,

from the low frequencies to the higher ones, and that requires a large number of forward simulations at each iteration of the multiscale

reconstruction. To consider both onshore and offshore applications of full-waveform inversion, the modelling method must be accurate in

the case of complex media that incorporate either a free surface of arbitrary shape or a water layer, while remaining sufficiently fast to be

able to perform multiple simulations in a tractable time. High-order accuracy methods that might perform well in the time domain turn out

to be prohibitive in the frequency domain if the linear system that results from the discretization of the frequency-domain wave equation is

solved with a direct solver (Stekl & Pratt 1998; Hustedt et al. 2004). Direct solvers are generally used to perform 2-D frequency-domain

wave modelling because solutions for multiple sources can be efficiently computed by substitutions once the impedance matrix has been

LU-factorized. A key feature for numerical efficiency is the compactness of the spatial operator that controls the numerical bandwidth of the

impedance matrix, and therefore, its fill-in during factorization. Therefore, we shall concentrate our comparisons on O(�x2) FD methods

that minimize the memory requirement of the linear system resolution for the frequency-domain formulation. The O(�x4) FD method

(Levander 1988) has been shown to be an efficient compromise between memory saving and CPU demand for time-domain formulation.

Unfortunately, even with a coarser meshing, this higher-order stencil dramatically increases the memory cost of the linear system resolution

in the frequency-domain formulation (Hustedt et al. 2004).

Optimal compact FD stencils based on the so-called mixed-grid method that combines the Cartesian FD stencil and the rotated FD stencil

(Saenger et al. 2000) and antilumped mass features have been designed for frequency-domain wave-propagation modelling. This approach

of combining stencils has been shown to be very efficient for the acoustic wave equation (Jo et al. 1996; Hustedt et al. 2004), for which only

four gridpoints per wavelength can be used. Stekl & Pratt (1998) have shown limitations in the elastic case, when a liquid–solid interface

is involved; here, the Cartesian stencil has to be removed. The same limitation applies when considering a complex free surface, leaving

second-order FD stencils. For the rotated FD stencil (Saenger et al. 2000), the free surface condition is verified simply through a vacuum

approach, with a minimum of 25 nodes per shear wavelength for a flat topography, and up to 60 nodes per shear wavelength with a complex

topography (Saenger & Bohlen 2004; Bohlen & Saenger 2006) in the time domain. Gelis et al. (2007) have also shown that this is similar in

the frequency domain, leading to the solving of rather significant sparse linear systems. The method we propose here will significantly reduce

this dense sampling near to the free surface, a key issue for frequency formulation.

We thus present a FV P0 method based on a first-order hyperbolic elastodynamic system in the frequency domain, as is usual for FV

formulations (Remaki 1999). We will deduce the discretized system of linear equations to be solved only for velocity components, using

the parsimonious strategy (Luo & Schuster 1990). The numerical dispersion behaviour of this scheme will be analysed before discussing the

perfectly matched layer (PML) conditions (Berenger 1994). The implementation of the source will require specific attention before going

on to numerical validations against both the analytical solutions and the numerical solutions obtained by other numerical methods. For these

examples, we will show the respective numerical costs of frequency-domain FV and O(�x2) FD methods. We will conclude with the potential

of this FV approach in the frequency domain for the modelling of seismic 2-D P–SV waves and the perspectives for inversion.

2 F I N I T E V O L U M E F O R M U L AT I O N I N T H E F R E Q U E N C Y D O M A I N

We consider a first-order hyperbolic elastodynamic system for 2-D P–SV waves in isotropic medium in the frequency domain where both

velocities (V x, V z) and stress (σ xx, σ zz, σ xz) are unknown quantities as described by the following differential system:

−ιωVx = 1

ρ(x)

{
∂σxx

∂x
+ ∂σxz

∂z

}
+ Fx
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−ιωVz = 1

ρ(x)

{
∂σxz

∂x
+ ∂σzz

∂z

}
+ Fz

−ιωσxx = [λ(x) + 2μ(x)]
∂Vx

∂x
+ λ(x)

∂Vz

∂z
− ιωσxx0

−ιωσzz = λ(x)
∂Vx

∂x
+ [λ(x) + 2μ(x])

∂Vz

∂z
− ιωσzz0

−ιωσxz = μ(x)

{
∂Vx

∂z
+ ∂Vz

∂x

}
− ιωσxz0

, (1)

where the Lamé coefficients that describe the medium are denoted by λ, μ, the density by ρ and the angular frequency by ω. Source terms

are either point forces (F x , F z) or applied stresses (σxx0
, σzz0

, σxz0
) as introduced in system (1). The pure imaginary number defined as

x2 = −1 is denoted as ι. The Fourier transform follows the usual convention as f (ω) = ∫ +∞
−∞ f (t)e−ιω dt . To develop a pseudo-conservative

formulation that will be useful for integration over a surface in 2-D, we will consider the following new vector with three components
�T t = (T1, T2, T3) = [(σxx + σzz)/2, (σxx − σzz)/2, σxz]. Moreover, we must consider a finite domain, and therefore, we apply PML absorbing

conditions (Berenger 1994) through the functions s x , s z for the velocity equations and the functions s ′
x , s ′

z for the stress equations. More

details on the expression of these damping functions s x , s z , s ′
x , s ′

z are given below. The new differential system equivalent to system (1) can

be written as:

−ιωρVx = sx
∂(T1 + T2)

∂x
+ sz

T3

∂z
+ ρFx

−ιωρVz = sx
∂T3

∂x
+ sz

∂(T1 − T2)

∂z
+ ρFz

−ιωT1

λ + μ
= s ′

x

∂Vx

∂x
+ s ′

z

∂Vz

∂z
− ιωT 0

1

λ + μ

−ιωT2

μ
= s ′

x

∂Vx

∂x
− s ′

z

∂Vz

∂z
− ιωT 0

2

μ

−ιωT3

μ
= s ′

x

∂Vz

∂x
+ s ′

z

∂Vx

∂z
− ιωT 0

3

μ
. (2)

We apply a surface integration over a control cell identified by the index i. For practical reasons of meshing, control cells are often taken as

triangles, but the formulation still stands for any polygonal cells as quadrangles, for example. The geometrical description of a medium depends

on the meshing tool we are using, and the filling of 2-D space with triangles or 3-D space with tetrahedra is often provided by mesh designers.

Appendix A illustrates the development of the FV method in a regular Cartesian mesh, which is equivalent to a second-order FD formulation

in a Cartesian grid without the staggered grid structure. Therefore, we can compare the numerical performances of the FV method we have

developed and the staggered-grid O(�x2) FD method, which is less intensive than the O(�x2) FD method considering all of the unknowns

at each node of the grid. The formulation presented here is based on triangular cells in a conformal mesh, which imposes three edges and

neighbours for each cell considered. The quantities are constant inside each cell, an assumption known as the P0 approximation. Higher-order

interpolations of Pk are often referred to as discontinuous Galerkin methods (Käser & Dumbser 2006), which should be compared with

the new high-order FD schemes, a task that we have not tackled here since these approaches cannot be adapted to our frequency-domain

formulation as tackled with a direct solver. According to Green’s theorem, we end up with the discrete system written in a vectorial form (see

Appendix B for the complete derivation):

−ιωAiρi �Vi =
∑
j∈∂Ki

li j Gi j + Aiρi �Fi

−ιωAi	i �T i =
∑
j∈∂Ki

li j Hi j − ιωAi	i
�T 0

i . (3)

The surface of the i cell is denoted by Ai = ∫
Ki

dS. The index j ∈ ∂Ki labels the three neighbouring cells that have a joint edge with the

i cell. The length of the edge between cells i and j is denoted by l i j. The numerical approximation of fluxes is denoted by lijHij and lijGij. The

matrix 	i is the diagonal matrix defined by 	i = diag[1/(λi + μi ), 1/μi , 1/μi ]. Finally, source vectors applied inside the i cell are denoted

by �Fi and �T 0
i .

Centred numerical fluxes of the velocity and stress components between two cells are introduced because they preserve a discrete

energy inside the entire zone away from the PML. These were first proposed by Remaki (1999) and used by BenJemaa et al. (2007) for the

elastodynamics in the time domain, and Dolean et al. (2006) for Maxwell equations in the frequency domain. This gives us the following

estimation of the quantities Gi j and H i j :

Gi j =
∑

r∈{x,z}
ni jr Nk

sri
�Ti + sr j

�Tj

2

Hi j =
∑

r∈{x,z}
ni jr Mk

s ′
ri

�Vi + s ′
r j

�Vj

2
, (4)
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where the normal vector component r is oriented for each edge of cell i towards cell j and is denoted by ni jr . Projector matrices defined for a

vectorial formulation are denoted by M k and N k .

The geometrical properties of triangles give∑
j∈∂Ki

li j Pi j = 0, (5)

where Pi j = ∑
r∈{x,z} ni jr . These geometrical properties ensure that for the first-order system, the unknowns in a given cell i depend only on

the unknowns of the surrounding cells, and not on the unknowns of the cell i that are cancelled out by the construction as it is built by centred

fluxes.

Discrete equations expressing the stress components, as the second vectorial equation of system (3), can be eliminated by inserting them

into the fluxes that are required in the velocity equations, the first vectorial equation of system (3), thus reducing the memory requirement

for wave propagation. Luo & Schuster (1990) proposed this parsimonious strategy for the FD method, and it turns out that it also works well

for this FV method. After elimination of the stress components, we end up with the following two algebraic equations for the two unknown

velocity components:

ω2Vxi = ιωFxi + ιω

Aiρi

∑
j∈∂Ki

li j

2

{
ni jx sx j

[
ι(λ j + μ j )

ωA j

∑
k∈∂K j

l jk

2
(n jkx s ′

xk
Vxk + n jkz s ′

zk
Vzk ) + T 0

1 j

]

+ ni jx sx j

[
ιμ j

ωA j

∑
k∈∂K j

l jk

2
(n jkx s ′

xk
Vxk − njkz s ′

zk
Vzk ) + T 0

2 j

]

+ ni jz sz j

[
ιμ j

ωA j

∑
k∈∂K j

l jk

2
(njkx s ′

xk
Vzk + njkz s ′

zk
Vxk ) + T 0

3 j

]}

ω2Vzi = ιωFzi + ιω

Aiρi

∑
j∈∂Ki

li j

2

{
ni jz sz j

[
ι(λ j + μ j )

ωA j

∑
k∈∂K j

l jk

2
(njkx s ′

xk
Vxk + njkz s ′

zk
Vzk ) + T 0

1 j

]

− ni jz sz j

[
ιμ j

ωA j

∑
k∈∂K j

l jk

2
(njkx s ′

xk
Vxk − njkz s ′

zk
Vzk ) + T 0

2 j

]

+ ni jx sx j

[
ιμ j

ωA j

∑
k∈∂K j

l jk

2
(njkx s ′

xk
Vzk + n jkz s ′

zk
Vxk ) + T 0

3 j

]}
,

(6)

where k ∈ ∂K j labels the index of the cells j, the neighbours of the cell i. Due to properties of the triangle given by expression (5), and due to

the centred flux estimations and the parsimonious formulation that lead to this algebraic system (6), the velocity unknowns only depend on the

velocities of the neighbours of the neighbours of the cell: neighbouring velocity unknowns are not directly involved in the numerical scheme

for a given element. Fig. 1 illustrates this configuration on a regular mesh, where the numerical scheme centred on the black central cell

depends on the unknowns at this cell and on the unknowns belonging to the neighbours of the neighbouring cells (grey cells). No dependency

with hatched-cell unknowns is seen, as previously noted by LeVeque (2007) as the black/red pattern of the centred numerical schemes.

Eqs (6) can be recast in matrix form as AV = B, where the sparse impedance matrix A contains 14 non-zero coefficients per row in the

general case (i.e. without any regular structure), due to the expected irregular numbering of the cells inside the mesh. We should also stress

that the corresponding matrix for the parsimonious O(�x2) rotated FD stencil (Gelis et al. 2007) has 18 non-zero elements.

The free-surface condition is explicitly expressed in the numerical scheme by considering a ghost cell above the free surface that has

the same velocity and the opposite stress components to those below the free surface, in order to fulfil the zero stress at the free surface while

Figure 1. Illustration of the numerical scheme. In black, the central cell for which the solution is computed. The neighbouring cells (hatched) have unknowns

that do not influence the scheme. In grey, the neighbours of these neighbouring cells with unknowns that are involved.
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keeping the correct numerical estimation of the particle velocity at the free surface. Using these velocities and stresses in the ghost cell, the

stress flux across the free surface interface vanishes, while the velocity flux is twice the value that would have been obtained by neglecting

the flux contribution above the free surface. This boundary condition has been implemented by modifying the impedance matrix accordingly

without introducing any new unknown quantities. Similarly, fluid–solid interface modelling requires discontinuities of particle tangential

velocities at the boundary. The specific interface conditions that follow the same strategy as that described by BenJemaa et al. (2007) for

crack simulations, have also led to a modification of the impedance matrix for both cells that share an interface segment, without increasing

its complexity. The same equations with identical numerical schemes are used for both fluid and solid media, where the μ value is set to zero

inside the fluid medium.

3 N U M E R I C A L P RO P E RT I E S

Discretization leads to numerical dispersion in the particle velocity wavefields. For unstructured meshes, the dispersion could not be estimated

analytically, while a regular distribution of equilateral triangles will allow such an investigation. Moreover, we must consider specific properties

at the edges of the grid for the extension of the medium to infinity. Finally, the source implementation has to excite the entire grid without

exciting a specific subgrid that is related to the centred pattern of our system.

3.1 Numerical dispersion analysis

The numerical dispersion can be estimated for such a discrete system of a regular distribution of equilateral triangles (see the mesh configuration

in Fig. 1 for this pattern). We here consider an incident-plane wave propagating inside an infinite and homogeneous medium away from the

PML and source zones. Due to the regular mesh, the Hermitian structure of the matrix makes eigenvalues real. They are computed numerically

for different Poisson ratios from 0.0 to 0.5, for different number of cells per wavelength, and with incidence angles ranging between 0◦ and

180◦ with steps of 15◦. The dispersion curves are quite similar to those obtained by Virieux (1986b) using an accurate O(�x2) FD scheme,

as shown in Fig. 2. The rule of thumb of 10 gridpoints per wavelength appears to provide acceptable propagation dispersion, whatever the

value of the shear wave velocity, which can decrease to zero without any numerical instability. The O(�x2) rotated staggered-grid FD stencil

provides similar results with a grid length that is higher by a factor of
√

2 (Saenger et al. 2000). We should also note that we have considered

the triangle edge length for the FV approach and the grid step length for the FD approach, as our discrete reference values.

3.2 PML absorbing boundary conditions

The frequency domain allows the straightforward numerical implementation of PML conditions, without any splitting of particle velocity

components or additional integration of memory variables, as for the time-domain formulation, due to the complex coordinate change (Chew

& Liu 1996). Numerical tests show that the PML efficiency strongly depends on the mesh structure in the PMLs. The PML absorbing boundary

condition requires that PML–PML interfaces be oriented along the Cartesian directions (Berenger 1994). This condition is not satisfied if

triangles of arbitrary orientations are used in the PML layers. In such a case, we saw poor absorption, as illustrated in Fig. 3(a) for a distribution

of non-constrained triangles in arbitrary orientations in the PML layers. Therefore, a constrained mesh in PML zones with multiple layer

structures parallel to the Cartesian directions (see Fig. 4 for the discretization of the lower left quarter of the medium) provides efficient

absorption of the elastic waves. A transition is, of course, performed between the main central zone of the grid and the PML constrained

zones. With this constraint on the mesh construction, at each parallel interface of the PML layers, the major part of the energy is contained

along the damped direction, and the numerical flux energy is globally damped by the variations in the PML functions s x , s z , s ′
x , s ′

z as we move

deeper into the PML zone. We can here note that use in the PML of quadrangle cells oriented along the Cartesian axes should provide a very

efficient behaviour as absorbing boundaries, although this is less easy to implement with triangular mesh generators.

Figure 2. (a) P wave and (b) S wave normalized phase–velocity dispersion curves for different plane waves with various incident angles for both the FV

(continuous lines) and the O(�x2) Cartesian FD approaches (dashed lines).
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546 R. Brossier, J. Virieux and S. Operto

Figure 3. Frequency map solutions where the real part of the horizontal velocity for different PML configurations is displayed. (a) No mesh constraints applied

and (b) with mesh constraints applied.

Figure 4. PML construction with multiple layer structures parallel to the Cartesian directions for the lower left-hand quarter of the medium.

The standard frequency PML function is defined by:

sr = 1

1 + ιγr/ω
, (7)

where the index r can be x or z. A similar expression is obtained for the s ′
r function. Both of these functions are only used inside the PML

zones. Outside of the damping zone, the values of the sr and s ′
r functions are simply equal to 1. The value γ r is typically used as a polynomial

or cosine function for progressive energy damping. Numerical tests have shown better behaviour with a modified PML function derived from

the developments indicated by Drossaert & Giannopoulos (2007). The definition of the damping functions sr and s ′
r are extended through the

following equation:

sr = 1

κr + ιγr/ω
, (8)
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Parsimonious FV frequency-domain method 547

Figure 5. Frequency map solutions with the real parts of the horizontal velocity for a horizontal point force in an infinite medium. (a) Single cell excitation

and (b) smooth source excitation on several cells (29).

with the expressions κr and γ r as cosine functions. A linear dependency of the term γ r with frequency has shown good damping behaviour

that is almost independent of the frequency. These functions are defined as:

γr (l) = ωB cos

(
lπ

2lpml

)

κr (l) = 1 + C cos

(
lπ

2lpml

)
, (9)

along the perpendicular direction, where l pml is the size of the PML zone, which is taken as fifteen cells in the examples that we have selected

here. Efficient damping has been obtained with the values of B = 25 and C = 2 for eqs (9). For an illustration of the PML mesh structure

and of the numerical implementation of the wave-absorbing effects, a test was performed in a homogeneous infinite medium with a P-wave

velocity of 2500 m s−1, an S-wave velocity of 1558 m s−1, and a density of 1500 kg m−3 inside a finite grid. The simulation was performed

at 4 Hz with a unitary explosive source. Fig. 3 shows the frequency map solution for (a) a non-constrained mesh and (b) a constrained mesh.

Only the real part of the horizontal velocity is shown, although the behaviour is similar for the other components of the solutions. The mesh

structure clearly has a significant influence on the PML efficiency.

3.3 Source implementation

The introduction of both point forces and point excitation stresses in the first-order system of eq. (1) allows us to develop various point

excitations: an impulsive force along the Cartesian directions or an explosive source can be applied easily using forces and stresses, respectively.

A staggered behaviour over the mesh occurs in discrete equations, where the unknowns of one cell do not depend directly on the unknowns

of its neighbours, but on the unknowns of the neighbours of the neighbouring cells. For particular mesh configurations, such as a regular

equilateral mesh, if the source excitation is applied to one cell, simulations show that in the mesh only one cell out of two is excited. To

avoiding this checker-board pattern, we spread the source over several cells using a Gaussian function. Of course, the numerical dispersion

will express its properties based on twice the coarseness of the grid, as this is the price to be paid when considering centred fluxes. A similar

observation can be made for the O(�x2) rotated FD scheme. This has been the main reason for different authors moving to a staggered grid

formulation. Fig. 5 shows this pattern for an infinite homogeneous model with a central horizontal force. A single cell is excited in Fig. 5(a),

whereas a Gaussian source is applied to 29 cells in Fig. 5(b). It can also be noted that for the model with a free surface, the explicit formulation

of such a boundary recouples the two decoupled submeshes, as shown in Fig. 6 with the same source configuration as in the previous test. We

still need to implement smooth source excitation for propagation inside the medium.

4 N U M E R I C A L R E S U LT S

Several benchmarks will be presented to assess the accuracy of this new method, and we will focus more specifically on the influence of the

mesh structure. Indeed, numerical tests with regular equilateral meshes and arbitrary unstructured meshes have shown the influence of the

mesh regularity on solution accuracy: in spite of mesh refining, the solutions of the simulations do not converge to the true solution when

considering unstructured meshes, whereas convergence is achieved with regular meshes. A sensitivity study on perturbed regular meshes has

confirmed this behaviour. Accuracy problems in unstructured meshes typically involve traveltime shifts in seismograms. Dolean et al. (2006)

observed the same behaviour of convergence dependency for P0 interpolation when applied to Maxwell equations in the frequency domain,

while convergence of a linear P1 interpolation appears to be less dependent on the regularity of the mesh. Moreover, the theoretical evaluation
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548 R. Brossier, J. Virieux and S. Operto

Figure 6. Frequency map solution with real parts of the horizontal velocity for a horizontal point force in a flat topography model. (a) Single cell excitation

and (b) smooth source excitation on several cells (29). The mesh pattern is less visible than for Fig. 5, although it is still present in (a).

of the second-order accuracy in space of the numerical scheme has been demonstrated for regular structured meshes (Remaki 1999). In our

different comparisons, we will specify when we consider regular equilateral meshes or unstructured meshes. In the following, we first compare

the FV results with the analytical solutions for different canonical problems. The solutions to more complex models are then compared with

FD solutions.

Analytical solutions and reference FD codes have been constructed in the time domain, and comparisons are performed in this domain.

FV solutions are, of course, computed for several frequencies, spanning over the source wavelet bandwidth. To avoid the wrap-around effect in

seismograms, complex frequencies (Mallick & Frazer 1987) are used in frequency-domain simulations. An inverse fast Fourier transformation

will provide us with seismograms in the time domain for the comparison of the solutions. The size of the cells is chosen with respect to the

maximal frequency of the source bandwidth. The results for the unstructured meshes are finally illustrated.

4.1 Comparison with analytical solutions

4.1.1 An infinite homogeneous model with an explosive source: the acoustic case

Acoustic propagation can be modelled inside an infinite homogeneous elastic medium using an explosive source that generates only a P-wave

pulse. The numerical grid is bounded by four absorbing layers on the edges. For the homogeneous case, the analytical solutions are build

up for the Helmholtz equation. A comparison of the radial velocity with the analytical solution was performed for a 2500 m s−1 P-wave

velocity medium with a regular equilateral mesh of size 1/10 of the P-wavelength (no S-wave is generated). Fig. 7 shows the seismogram of

the radial velocity at a receiver at a distance of 500 m from the source, and it illustrates the good agreement between the FV (crosses) and

analytical (continuous line) seismograms. The tangential velocity is not strictly equal to zero, due to the smooth source and the numerical

errors, although it still remains negligible.

4.1.2 Flat free-surface medium: the Garvin problem

The Garvin analytical solution deals with the propagation of elastic waves in a homogeneous half-space with a flat free surface and an explosive

source (Garvin 1956). Comparisons with a Garvin solution are quite a challenging problem because the FV method must model Rayleigh

waves with good accuracy near to the free surface, a critical issue for an efficient full waveform inversion algorithm. A homogeneous medium

with a P-wave velocity of 3464 m s−1, an S-wave velocity of 2000 m s−1, and a density of 2000 kg m−3 was considered. A Gaussian explosive

source was considered at 150 m in depth, with 15 m of correlation length and with a line of receivers set on the surface with an offset of

200–4000 m, and a space step of 200 m. A Ricker wavelet of central frequency 4 Hz was chosen. The simulation was performed over the

source bandwidth, ranging from 0 to 14 Hz. A regular equilateral mesh was taken, with a cell edge size of 15 m, which represents 1/10 of the

S-wavelength.

The horizontal and vertical particle–velocity seismograms computed with the FV method are compared with the analytical ones in Fig. 8.

The direct and the Rayleigh waves are both modelled with very good levels of accuracy in shape and amplitude for the whole range of offsets

for the two components. No time-shift appears with the offsets, which confirms the small dispersion of the scheme when considering 10 cells

per S-wavelength. Since our seismograms have relative simple shapes, we have considered the relative RMS residuals of the particle velocity

field in the time domain for a quantitative estimation of the accuracy of the numerical solutions. The relative residual at one observer is the

L2 norm of one component of the differential seismograms over the L2 norm of the same component of the reference seismogram. Moreover,
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Figure 7. Comparison between analytical (continuous line) and numerical (crosses) seismograms for the acoustic case.

Figure 8. Seismograms for the Garvin problem. (a) Horizontal and (b) vertical components of the velocity at the receivers. The analytical solution is represented

by dotted lines, FV by continuous lines, and the differences by dashed lines.

we consider the total relative residual, named the TRR value, as the average of the relative residuals over the receivers. The TRR values are

4.1 × 10−2 and 2.6 × 10−2 for the horizontal and vertical components, respectively.

4.1.3 The two-layer model with a horizontal interface

An analytical solution can be constructed when considering two homogeneous half-spaces. A compressional point source will act in the upper

layer. The software code known as EX2DELEL and provided by the Spice consortium (http://www.spice-rtn.org) was used to compute these

solutions. Green’s functions were first computed by the Cagniard-De Hoop technique, and a numerical convolution with the source wavelet

gave the total response. The FV simulation was performed with the PML conditions on the four edges of the model for considering an infinite

medium. The model dimensions were 12 × 2.5 km. The interface between the two layers was at a depth of 1150 m. The receivers were placed

on a line at a depth of 280 m, with a space step of 200, from 0 to 12 000 m in distance, leading to an array of 201 sensors. The explosive source

was placed at a distance of 500 m and at a depth of 370 m, with a correlation length of 30 m. The source wavelet was a Ricker wavelet with a

central frequency of 4 Hz. Two tests were performed in regular equilateral meshes to evaluate the fluid–solid and solid–solid interfaces.

(1) Fluid–solid interface: Fluid–solid interface modelling is quite challenging for marine acquisition or simulation in reservoirs, as

discontinuities must exist at the boundary. It is important to verify the accuracy of the solution, and we considered a simple planar interface.

The upper medium was considered as an acoustic one with a P-wave velocity of 1500 m s−1, an S-wave velocity of 0 m s−1 and a density of
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550 R. Brossier, J. Virieux and S. Operto

Figure 9. Seismograms computed in the two-layer model with a liquid–solid interface. (a) Horizontal and (b) vertical components of the velocity at the

receivers. The analytical solution is represented by dotted lines, FV by continuous lines, and the differences by dashed lines.

Figure 10. Seismograms at (a) receiver positions, and (b and c) snapshots for the horizontal component of the particle velocity for the two-layer problem with

a liquid–solid interface and short offset geometry. Note the parasite reflections from the PML with a liquid–solid interface. The snapshots illustrate the incident

wavefield at 2.8 s (b) and the reflected waves from the PML at 4.8 s (c).

1000 kg m−3, while the lower medium had a P-wave velocity of 3400 m s−1, an S-wave velocity of 1963 m s−1 and a density of 2400 kg m−3.

A discretization of 13 cells per P-wavelength in the fluid domain was chosen to keep the numerical dispersion negligible. Fig. 9 shows the

horizontal and vertical components of the particle velocity for the analytical (dotted), FV (continuous) and residual (dashed) solutions. There

is good agreement between the analytical and FV solutions. The TRR values are 15.2 × 10−2 for the horizontal component, and 17.9 × 10−2

for the vertical one. However, we can see parasite reflections from PML zones exactly where the acoustic/elastic interface penetrates the PML

layer. Fig. 10 illustrates such reflections for a shorter offset model.

(2) Solid–solid interface: The solid–solid interface test was performed with values of 2500 m s−1, 1558 m s−1 and 1500 kg m−3 for the

P-wave velocity, the S-wave velocity, and the density for the upper half-space, and values of 3400 m s−1, 1963 m s−1 and 2400 kg m−3,

respectively, for the lower half-space. The FV seismograms were computed in a regular mesh, with 10 cells per shear wavelength. There is

good agreement between the analytical and FV seismograms (Fig. 11). The TRR values are 10.0 × 10−2 and 12.3 × 10−2 for the horizontal

and vertical components, respectively. Note the efficient absorption of the PML in the case of the elastic–elastic interface.
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Figure 11. Seismograms computed for the two elastic-layer model. (a) Horizontal and (b) vertical components of the velocity at the receivers. The analytical

solution is represented by dotted lines, FV by continuous lines, and the differences by dashed lines.

Figure 12. Geometry of the Corner-Edge model.

4.2 Comparison with numerical solutions

The FV method needs to be benchmarked according to the other numerical techniques that can be applied to a more complex medium, which

should be more representative of the realistic applications of full waveform inversion. The FV solutions were validated against seismograms

computed with a time-domain O(�x2, �t2) rotated staggered-grid FD method (Saenger et al. 2000), for three complex media: the corner-edge

model; a homogeneous hill model for considering complex topography; and a realistic heterogeneous model corresponding to a subset of the

so-called Marmousi II model.

4.2.1 The corner-edge model

A synthetic model, known as the corner-edge model (Fig. 12), is defined by a flat free surface and a corner with a sharp velocity contrast that

introduces multiple reflections and diffractions for both body and surface waves (Virieux 1986a). The upper medium had a P-wave velocity

of 6000 m s−1, whereas the lower medium had a P-wave velocity of 9000 m s−1. The S-wave velocity was computed from the P-wave velocity,

with a ratio of
√

3. The model had a homogeneous density of 2500 kg m−3. The explosive source was located at (x = 7500 m, z = 2900 m),

and it had a Ricker wavelet of central frequency of 4 Hz as the time function. The receiver line was placed below the topography at a depth of

30 m, with a receiver spacing of 50, from 0 to 18 000 m. An equilateral mesh was constructed with an edge length of 26.6 m, corresponding

to the discretization rule of 10 cells per minimum shear wavelength. The agreement between the FV and FD solutions is illustrated in Fig. 13.

The TRR values are 10.1 × 10−2 for the horizontal and 9.8 × 10−2 for the vertical components of the velocity.

4.2.2 Complex topography model

A homogeneous model with a hill-shaped topography was used to assess the accuracy of the FV method with a non-flat free surface. A

homogeneous medium was used (4000 and 2309 m s−1, for P- and S-wave velocities, respectively, and 2000 kg m−3 for density). An explosive

source was set in the middle of the hill, 25 m below the topography, and it had a Ricker wavelet of central frequency of 4 Hz as a time

dependence. The receiver line was located at a depth of 5 m below the free surface. Fig. 14 shows the real part of a 10-Hz monochromatic

wavefield for the horizontal velocity component. An equilateral mesh allows the modelling of the topography by straight lines (Fig. 15),
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552 R. Brossier, J. Virieux and S. Operto

Figure 13. Seismograms computed for the Corner-Edge model. (a) Horizontal and (b) vertical components of the velocity at the receivers. The reference

solution computed with the FD method is represented by dotted lines, FV by continuous lines, and the residuals by dashed lines. Both of these solutions are

very similar across the entire time window.

Figure 14. Monochromatic wavefield of the horizontal velocity for the hill model. The real part of the wavefield is illustrated for a 10-Hz simulation.

without the staircase description of the FD methods. This description is not perfect, as it should be with an unstructured mesh, but numerical

simulations have shown quite accurate results with 15 cells per shear wavelength with this topography, whereas the second-order rotated

staggered-grid FD stencil requires 60 points. The FV and FD seismograms computed with these two above-mentioned discretization rules

(15 and 60 cells per shear wavelength, respectively) are compared in Fig. 16, and they show good agreement. The TRR values are 11.7 ×
10−2 and 12.4 × 10−2 for the horizontal and vertical components of the velocity, respectively. The surface waves are well modelled, and no

numerical dispersion occurs. Simulations with a finer mesh led to comparable seismograms for both the FV and the FD methods.

4.2.3 Realistic model: a subset of the Marmousi II model

The Marmousi II synthetic model represents a complex elastic medium, which makes it suitable for testing the FV method we propose here.

A limited target of the model with multiple interfaces was chosen to limit the core memory requested by the frequency-domain formulation

used for building the time-domain seismograms. This target, the dimensions of which were 5000 × 2000 m (6000 × 2500 m with the PML

layers), is illustrated in Fig. 17 for the P-wave velocities. An explosive source was located at (x = 1000 m, z = 100 m), and a Ricker wavelet

of central frequency of 4 Hz was considered. The receiver line was set at a depth of 25 m below the topography. The edges of the regular

triangular mesh had lengths of 7.1 m, corresponding to 10 cells per shear wavelength. Fig. 18 illustrates the seismograms at the receivers.

Comparisons with the FD method show quite similar results. The small differences that occur for the horizontal velocity can be attributed to

the model description, which is slightly different for the square and the triangle parametrization. The FV simulations in finer triangular meshes

led to similar seismograms, hence providing additional validation of the discretization rule of 10 cells per S-wavelength for heterogeneous

media, which is quite encouraging for future work.
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Parsimonious FV frequency-domain method 553

Figure 15. Description of a complex topography with regular equilateral triangles.

Figure 16. Seismograms computed for the hill model. (a) Horizontal and (b) vertical components of the velocity. The reference solution computed with the

FD method is represented by dotted lines, the FV solution by continuous lines, and the difference between the two solutions with dashed lines.

Figure 17. P-wave velocity distribution of the realistic model taken from the Marmousi II model.

4.3 Numerical tests with unstructured meshes

This FV method is now analysed in unstructured meshes. The P0 interpolation should provide solutions with a given level of accuracy in such

meshes. Previous hill models and Marmousi II models will be considered. The FV solutions computed for an equilateral mesh will be used as

the reference solutions. Unstructured meshes allow very precise modelling of the free surface when a complex topography is considered. No

constraints on triangle angles have been applied for either model. Moreover, the triangle sizes can be adapted to the propagated wavelengths
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554 R. Brossier, J. Virieux and S. Operto

Figure 18. Seismograms computed in the target of the Marmousi II model with the FV method, using a regular equilateral mesh. (a) Horizontal and (b) vertical

particle velocities at the receiver positions.

Figure 19. Seismograms computed in the hill model using equilateral and unstructured meshes. (a) Horizontal and (b) vertical components of the particle

velocity at the receivers. The reference solution computed with FV in regular equilateral mesh is plotted with dotted lines, and the solution in an unstructured

mesh with continuous lines. Note the advance of the solution computed in the unstructured mesh, as it increases with propagation time.

locally, to minimize the number of cells, and therefore, the number of unknowns to be solved in the linear system, a very appealing feature

when performing factorization of the impedance matrix. The hill model simulation was performed with an unstructured mesh by considering

the discretization rule of fifteen cells per minimum shear wavelength. The comparison between seismograms computed for an equilateral

structured and for unstructured meshes is shown in Fig. 19. Of course, there is a good match of the amplitudes, whereas there is a negative

time-shift of the phases that increases with the propagation time in seismograms computed in the unstructured mesh. The Marmousi II model

simulation was performed in an unstructured mesh adapted to the local shear wave velocity, with at least 10 cells per shear wavelength. The

seismograms look similar to those computed for an equilateral mesh (compare Figs 18 and 20). However, a direct comparison between the

seismograms computed in the equilateral and unstructured meshes (Fig. 21) shows the same slight negative time delay as is seen for the hill

model. The simulations in finer unstructured meshes for both the hill and Marmousi II models have not shown better convergence of the

numerical solution, as expected for the P0 interpolation for unstructured meshes.

5 N U M E R I C A L C O S T O F M E T H O D

Computational costs are always a difficult question, and we will focus here on a comparison between the FV and FD methods for the same

order of accuracy in the frequency domain. We will focus on the specific example of the Marmousi II model (Fig. 17). The source was

an explosion. The modelled frequency was 13 Hz. We can illustrate the CPU time and memory requirements of the FV method with the

second-order parsimonious rotated frequency-domain FD method (Gelis et al. 2007). Both of these methods make use of the direct solver

MUMPS (MUMPS-team 2007), which performs the resolution of the linear system by LU decomposition of the sparse matrix through a

multifrontal approach. The medium is discretized with 10 cells per minimum S-wavelength for the FV approach in a regular equilateral mesh,
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Figure 20. Seismograms computed in the target of the Marmousi II model using an unstructured mesh. (a) Horizontal and (b) vertical components of the

velocity at the receivers. These seismograms can be compared with that computed in the same model parametrized with an equilateral mesh (Fig. 18).

Figure 21. Comparison between the FV seismograms computed in the target of the Marmousi II model with equilateral and unstructured meshes. (a) Horizontal

and (b) vertical components of the velocity at the receivers. The reference solution computed with FV in a regular equilateral mesh is represented by dotted

lines, and the solution in an unstructured mesh by continuous lines.

with 10 cells per local S-wavelength for the FV method in an unstructured mesh, and with 28 points for the FD method in order to have an

acceptable numerical dispersion.

Table 1 illustrates the requirements of both of these methods for sequential execution on a single processor. The coarser parametrization

of the FV naturally leads to less unknowns to be computed and a less expensive estimation in terms of CPU time and core memory for all of

the MUMPS phases: a factor of 2.5 can be noted in this example, between the FV method in a regular mesh and the FD method. Moreover,

an adaptive unstructured mesh allows for a significant decrease in the numerical resources when a heterogeneous medium is considered,

although we must be aware of the approximate precision of the solution when performing the seismic inversion procedure. However, the mesh

description of the medium introduces several additional table build-ups and manipulations for the matrix construction, which are more time

consuming than the simple implicit construction of the FD techniques on a regular grid. Extra CPU time costs of the FV methods will remain

small for the different MUMPS numerical procedures, and will occur only once when considering a full waveform inversion algorithm; they

will not hamper the benefit of using a coarser grid for the FV method.
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Table 1. Overview of the numerical cost for the FV method in regular and unstructured

meshes and the O(�x2) FD method in the frequency domain for a realistic model at

13 Hz.

Numerical method Regular FV unstructured FV FD

Number of unknowns to solve 1 421 364 549 638 4 850 020

Time to prepare data for matrix building (s) 54.4 40.1 1.0

Time for matrix building (s) 1.6 0.80 10.9

Time for factorization (s) 272.3 79.5 999.4

Memory use for factorization (Mb) 3448 1333 12061

Time for resolution of 1 shot (s) 3.8 1.7 13.5

6 D I S C U S S I O N A N D C O N C L U S I O N

A FV method dedicated to full waveform inversion has been formulated in the space-frequency domain for 2-D P–SV wave propagation. By

using the parsimonious approach, only particle velocity unknowns are used in the build-up of the impedance matrix, which incorporates various

medium properties, including a free surface and possible liquid–solid interfaces. Comparisons between numerical solutions computed with

analytic and numerical reference solutions for canonical and realistic configurations have shown that a structured equilateral mesh provides

accurate results for a discretization of 10 cells per shear wavelength, even if the topography and surface waves are considered. A complex

topography should require a finer description of 15 cells, coarser than O(�x2) FD due to the triangular meshing. Unstructured meshes are

easily taken into account in the P0 FV formulation, although they suffer from a lack of precision even when fine meshes are considered.

The CPU/memory requirements are naturally less expensive than for O(�x2) FD, in spite of the complex table manipulations due to the

mesh description of medium. Finally, the FV method with regular meshes appears to be very efficient when compared with O(�x2) FD

methods, especially when a realistic topography is considered. Considering unstructured meshes allows a significant decrease in the numerical

resources; however, with lower accuracy of the wavefield approximation. Future work will focus on the accuracy needed in forward modelling

for the application of full waveform inversion. We will investigate further the usefulness of unstructured meshes and the correlated accuracy

for such an imaging strategy. As an alternative, moving to higher order for the interpolation in the discontinuous Galerkin approach will

be a possibility. By considering the P1 interpolation, we may find the best compromise between accuracy for the wavefield estimation and

computational efficiency required by the inversion.
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Virieux, J., 1986b. Séismes: rupture et onde (volumes I et II), PhD thesis,
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A P P E N D I X A : E Q U I VA L E N C E F V P 0 A N D O( Δx2) F D I N R E G U L A R S Q UA R E G R I D S

The proposed FV method can be developed in any polygonal mesh structure. In a mesh of regular squares, the FV formulation is equivalent

to the second-order FD Cartesian stencil, as we now show. Let us start with the first-order discrete system in velocity and stress:

ω2 �Vk = ιω

Akρk

∑
j∈∂Kk

lk j

(
nkjx Nx sx j + nkjz Nzsz j

) �Tj

2
+ ιω �Fk

ω2 �Tk = ιω	−1
k

Ak

∑
j∈∂Kk

lk j

(
nkjx Mx s ′

x j
+ nkjz Mzs

′
z j

) �Vj

2
+ ω2 �T 0

k, (A1)

where the cell numbering is denoted by the global index k. We modify the numbering of the cells towards a double index system (i , j) that is

more suitable for a mesh of squares (Fig. 22) where the cell (i , j) has four neighbours located in positions (i , j − 1), (i − 1, j), (i + 1, j)
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Figure 22. The regular Cartesian mesh for the development of the FV method equivalent to O(�x2) order FD.

and (i , j + 1). The quantity h denotes the constant step length of the grid. The system (A1) can now be written as a vectorial expression with

two subscript indices:

ω2−→Vi, j = ιω

h2ρi, j

(
− hNx sxi, j−1

−−−→
Ti, j−1

2
+ hNx sxi, j+1

−−−→
Ti, j+1

2
− hNzszi−1, j

−−−→
Ti−1, j

2

+ hNzszi+1, j

−−−→
Ti+1, j

2

)
+ ιω

−→
Fi, j

ω2−→Ti, j = ιω	−1
i, j

h2

(
− hMx s ′

xi, j−1

−−−→
Vi, j−1

2
+ hMx s ′

xi, j+1

−−−→
Vi, j+1

2
− hMzs

′
zi−1, j

−−−→
Vi−1, j

2

+ hMzs ′
zi+1, j

−−−→
Vi+1, j

2

)
+ ω2

−→
T 0

i, j , (A2)

which gives the following system of equations for scalar quantities:

ω2Vxi, j = ιω

2hρi, j

( − sxi, j−1
T1i, j−1

− sxi, j−1
T2i, j−1

+ sxi, j+1
T1i, j+1

+ sxi, j+1
T2i, j+1

− szi−1, j T3i−1, j + szi+1, j T3i+1, j

) + ιωFxi, j

ω2Vzi, j = ιω

2hρi, j

( − sxi, j−1
T3i, j−1

+ sxi, j+1
T3i, j+1

− szi−1, j T1i−1, j + szi−1, j T2i−1, j

+ szi+1, j T1i+1, j − szi+1, j T2i+1, j

) + ιωFzi, j

ω2T1i, j = ιω
(
λi, j + μi, j

)
2h

( − s ′
xi, j−1

Vxi, j−1
+ s ′

xi, j+1
Vxi, j+1

− s ′
zi−1, j

Vzi−1, j + s ′
zi+1, j

Vzi+1, j

) + ω2T 0
1i, j

ω2T2i, j = ιωμi, j

2h

( − s ′
xi, j−1

Vxi, j−1
+ s ′

xi, j+1
Vxi, j+1

+ s ′
zi−1, j

Vzi−1, j − s ′
zi+1, j

Vzi+1, j

) + ω2T 0
2i, j

ω2T3i, j = ιωμi, j

2h

( − s ′
xi, j−1

Vzi, j−1
+ s ′

xi, j+1
Vzi, j+1

− s ′
zi−1, j

Vxi−1, j + s ′
zi+1, j

Vxi+1, j

) + ω2T 0
3i, j

, (A3)

which are equivalent to the system of discrete equations of a full second-order Cartesian FD stencil inside which two staggered sub-systems

propagate the seismic wavefield in an uncoupled way.

A P P E N D I X B : F I N I T E V O L U M E D E V E L O P M E N T

The FV method is applied to first-order elastodynamic systems described by eq. (2). By introducing the projector matrices M x , N x , M z and

N x defined by:

Nx = Mt
x =

[
1 1 0

0 0 1

]

Nz = Mt
z =

[
0 0 1

1 −1 0

]
(B1)
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and the diagonal matrix 	 = diag
(

1
λ+μ

, 1
μ
, 1

μ

)
, system (2) can be written in a vectorial form with a divergence expression:

−ιωρ �V = −−−−−−−−−−−−→
div(sx Nx �T , sz Nz �T ) − ∂sx Nx

∂x
�T − ∂sz Nz

∂z
�T + ρ �F

−ιω	 �T = −−−−−−−−−−−−−→
div(s ′

x Mx �V , s ′
z Mz �V ) − ∂s ′

x Mx

∂x
�V − ∂s ′

z Mz

∂z
�V − ιω	 �T 0. (B2)

We then introduce vectorial forms: �G( �T ) = (sx Nx �T , sz Nz �T ) and �H ( �V ) = (s ′
x Mx �V , s ′

z Mz �V ), and apply a surface integration over a control

cell identified by the index i.∫
Ki

−ιωρ �V dS =
∫

Ki

−−−−−−→
div[ �G( �T )] dS −

∫
Ki

∂sx Nx

∂x
�T dS −

∫
Ki

∂sz Nz

∂z
�T dS +

∫
Ki

ρ �F dS

∫
Ki

−ιω	 �T dS =
∫

Ki

−−−−−−→
div[ �H ( �V )] dS −

∫
Ki

∂s ′
x Mx

∂x
�V dS −

∫
Ki

∂s ′
z Mz

∂z
�V dS −

∫
Ki

ιω	 �T 0 dS. (B3)

Through Green’s theorem, the surface integration of divergence terms allows flux integrals to appear:∫
Ki

−ιωρ �V dS =
∫

∂Ki

�G( �T ) �n dL −
∫

Ki

∂sx Nx

∂x
�T dS −

∫
Ki

∂sz Nz

∂z
�T dS +

∫
Ki

ρ �F dS

∫
Ki

−ιω	 �T dS =
∫

∂Ki

�H ( �V ) �n dL −
∫

Ki

∂s ′
x Mx

∂x
�V dS −

∫
Ki

∂s ′
z Mz

∂z
�V dS −

∫
Ki

ιω	 �T 0 dS, (B4)

where ∂Ki is the boundaries of cell K i and �n is the external normal vector of ∂K i .

We end up with the already explained discrete system written in a vectorial form. The partial derivatives of all of the PML functions are

cancelled by the P0 assumption:

−ιωAiρi �Vi =
∑
j∈∂Ki

li j Gi j + Aiρi �Fi

−ιωAi	i �Ti =
∑
j∈∂Ki

li j Hi j − ιωAi	i
�T 0

i (B5)

The integration of property (5) and flux formulation (4) into the discrete system (B5) gives the first-order discrete system where the parsimonious

strategy can be applied:

ω2 �Vi = ιω

Aiρi

∑
j∈∂Ki

li j

(
ni jx Nx sx j + ni jz Nzsz j

) �Tj

2
+ ιω �Fi

ω2 �Ti = ιω	−1
i

Ai

∑
j∈∂Ki

li j

(
ni jx Mx s ′

x j
+ ni jz Mzs

′
z j

) �Vj

2
+ ω2 �T 0

i . (B6)
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