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SUMMARY 
The answer to the above question depends on the definition of earthquake prediction. 
We discuss several definitions and possible classifications of earthquake prediction 
methods. We also consider various measures of prediction efficiency, review several 
recent examples of earthquake prediction, and describe the methods that can be used 
to verify prediction schemes. We conclude that an empirical search for earthquake 
precursors that forecast the size of an impending earthquake has been fruitless. 
Despite considerable effort in several countries, no statistically rigorous validation of 
proposed precursory phenomena is available; therefore, reported cases of precursors 
can be explained by random noise or by chance coincidence. We present evidence that 
earthquakes are non-linear, chaotic, scale-invariant phenomena. The most probable 
consequence of earthquake self-similarity is a lack of earthquake predictability as 
popularly defined, that is a forecast of a specific individual earthquake. Many small 
earthquakes occur throughout any seismic zone, demonstrating that the critical 
conditions for earthquake nucleation are satisfied almost everywhere. Apparently, any 
small shock can grow into a large event. Thus, it is likely that an earthquake has no 
preparatory stage. This sceptical view of current earthquake prediction efforts should 
not be interpreted as a statement that any further attempts to mitigate the destructive 
effects of earthquakes are futile. The seismic-moment conservation principle, when 
combined with geodetic deformation data, offers a new way to evaluate the seismic 
hazard, not only for tectonic plate boundaries, but also for areas of low seismicity, that 
is the interiors of continents. Earthquake clustering with a power-law temporal decay 
(Omori’s law) can be used to estimate the rate of future earthquake ocurrence. Real- 
time seismology can facilitate relief efforts after large earthquakes and eventually 
provide an immediate warning of severe shaking a few seconds or tens of seconds 
before the shaking starts. 

Key words: earthquake prediction, fractals, seismicity, statistical methods. 

1 INTRODUCTION 

The results of efforts to develop earthquake prediction methods 
over the last 30 years have been disappointing: after many 
monographs and conferences and thousands of papers we are 
no closer to a working forecast than we were in the 1960s 
(Geller 1991, 1996a, 1997; Geller et al. 1997; Kagan & Jackson 
1994b). (We use the words prediction and forecast as synonyms 
in this paper; moreover, the term precursor is used for phenomena 
which predict the size of a future earthquake.) There are several 
reasons for prediction difficulties. ( 1) Earthquake prediction 
has not been properly defined. The prediction of a ‘specific’ 
earthquake in a certain time, space and magnitude window 
(Wallace, Davis & McNally 1984) is probably impossible 

because of the continuum and fractal nature of earthquake 
statistical distributions. ( 2 )  No acceptable criteria exist for 
validating an earthquake prediction (Molchan & Kagan 1992). 
The frequently mentioned failure-to-predict versus false-alarm 
criterion is unsatisfactory, since a trivial strategy of alarm 
declaration for the entire region leads to zero errors (see 
discussion below, Section 3.1). Furthermore, in using this 
criterion it is impossible to distinguish a method with real 
predictive skill from a technique that owes its success to chance 
coincidence-the null hypothesis is not easily defined. (3) Most 
earthquake-forecast attempts are not rigorously testable due 
to an insufficient number of predicted events, or prediction 
ambiguities, or a prediction time window too large for the 
testing to be feasible. 
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The earthquake process is multidimensional. Thus, its pre- 
diction requires specifying at least the space, time and magni- 
tude aspects of an earthquake. The uncertainty in prediction 
parameters makes it imperative to formulate forecasts in 
terms of probabilities. Thus, earthquake prediction is a largely 
statistical problem: failure to appreciate this is at the root of 
many difficulties in prediction and analysis (cj: Vere-Jones 1995). 
‘Deterministic predictions’ are not realistic (see below) and 
forecasts of future seismicity should be statistical. Furthermore, 
all earthquake forecasts (whether deterministic or statistical) 
need to be evaluated statistically to see if their success could 
be due to chance. 

It is widely accepted that the extensive efforts of the last 
30 years to find ‘reliable’ earthquake prediction methods-the 
efforts which culminated in the Parkfield prediction experiment 
(Roeloffs & Langbein 1994 and references therein) in the USA 
and the Tokai experiment (Mogi 1995) in Japan-have largely 
failed (Jordan 1997; Scholz 1997; Kossobokov, Healy & Dewey 
1997). What are the fundamental reasons for such a failure? 
Why did the obvious inadequacy of available earthquake 
theories and the failure of previous ‘predictions’ not become 
clear to the geophysical community earlier? The answer to  the 
first question lies in the non-linear, scale-invariant features 
of earthquake occurrence-properties of seismicity not fully 
recognized until the 1980s. However, the latter failure can 
be explained by the general deficiency of the models and 
techniques proposed to forecast earthquakes. Generally the 
models have not been falsifiable (Popper 1980; Engelhardt & 
Zimmermann 1988), and efforts to validate and test these 
prediction algorithms rigorously have not been encouraged. 
In effect, earthquake prediction efforts and, in general, the study 
of earthquake occurrence have been carried out as a qualitative, 
verbal, descriptive, ‘story-telling’ exercise (Morowitz 1996), 
rather than a quantitatively predictive science, subject to  precise 
mathematical and statistical verification. 

The dual absence of a comprehensive theory for earthquake 
occurrence and rigorous validation efforts is the reason that, 
contrary to the practice of other ‘hard’, quantitative sciences, 
earthquake prediction efforts have been judged by a committee 
of experts. The National Earthquake Prediction Evaluation 
Council (NEPEC-see for example Lomnitz 1994, p. 34) in 
the USA, the Committee of senior scientists in Japan (Lomnitz 
1994, p. 270) and the IASPEI Sub-commission (Wyss 1991; 
Wyss & Dmowska 1997) evaluate proposed methods for 
earthquake prediction. These assessments are not based on  
a falsifiable test of a method’s performance, but on the 
plausibility of physical models and other assumptions and 
on the review of a few case histories. Such expert reviews 
are insufficient for validating a prediction scheme-plausible 
theoretical considerations and meticulous execution of experi- 
ments do not guarantee the methods success, and vice versa. 
As Rhoades & Evison (1989) and Evison & Rhoades (1994) 
point out, the reliability of a prediction model is indicated not 
by the statistical significance of the data upon which it is 
based, but by its performance when tested against independent, 
preferably future, data. 

Although we try to discuss as many recent efforts a t  earth- 
quake prediction as reasonably possible, this article is no 
comprehensive review. We focus instead on the predictability 
of earthquakes and on the theoretical and practical reasons 
for the difficulties that prediction research experiences. The 
history of earthquake prediction efforts is reviewed by Lomnitz 

(1994), Aki (1995) and Geller (1996a. 1997): recent. reasonably 
complete, reviews are provided by Turcotte (1991) and Agnew 
& Ellsworth (1991). Vere-Jones (1995) discusses the statistical 
aspects of prediction efforts. 

This paper considers only the scientific aspects of the 
prediction methods; predictions of isolated individual earth- 
quakes (see Geller 1997) are not discussed. We need first to 
discover prediction algorithms with a predictive power or 
predictive skill, that is ones that perform better than a random 
guess (the null hypothesis). Thereafter, we can decide whether 
such schemes are practical. Molchan & Kagan (1992) and 
Molchan (1997) consider the application problem from a 
decision-theoretical point of view. 

Implicit assumptions in earthquake prediction research have 
been that prediction is possible and that one need only 
find techniques and methods appropriate for solving the 
problem. We argue that it is not yet clear that certain types of 
predictions are feasible. Thus, earthquake predictability needs 
to be treated as an open problem, subject to careful and 
rigorous investigation. 

In Section 2 we consider definitions of earthquake prediction 
and several classes of prediction. Section 3 is dedicated to 
describing prediction testing, and Section 4 discusses recent 
results on the scale-invariance of the earthquake process and 
its implications for predictability. In Section 5 (Discussion) we 
summarize the scientific challenges of earthquake prediction 
research. 

2 PREDICTION TYPES 

2.1 Prediction definition 

There are several definitions of earthquake prediction. 
Nishenko’s (1989) definition is essentially the same as that 
proposed by the US National Research Council (NRC) in 
1976 (see Wallace et a/. 1984): ‘Earthquake prediction refers to 
the specification of the expected magnitude, geographic 
location and time of occurrence of a future event with sufficient 
precision that the ultimate success or failure of a prediction 
can be evaluated’. This definition has several defects which 
contribute to confusion and difficulty in prediction research. 

(1) The above definition, as well as the discussion by 
Wallace et a/. (1984), confirms that major effort has been 
directed towards predicting a speczjic individual earthquake, 
in other words a forecast is envisioned as the determination 
of parameters for the next strong earthquake to occur in a 
region. Both prediction experiments-Parkfield and Tokai 
(see a b o v e t a r e  designed to forecast an isolated individual 
earthquake. It is assumed that such an earthquake would be 
recognized, although no formal algorithm is proposed to 
identify it, for the obvious reason that such a rule is impossible 
to  formulate. The next event in a 1-D process is self-evident. 
However, the multidimensional nature of the earthquake pro- 
cess makes the definition of the next event impossible (Vere- 
Jones 1995), unless the process is made I-D. Such a radical 
transformation is attempted by the seismic-gap/characteristic- 
earthquake hypothesis (Nishenko 1989; Aki 1995; Kagan 
1996a). We discuss this hypothesis below. 

(2) This definition does not specify how the prediction is to 
be validated, that is what criteria are needed to evaluate its 
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effectiveness, how to test whether the predicted event could 
occur by chance, etc. 

( 3 )  The earthquake focal mechanism should be included in 
the list of earthquake parameters to be forecast. Modern 
earthquake catalogues routinely include the results of seismic 
moment tensor inversions (Dziewonski, Ekstrom & Salganik 
1996; US Geological Survey 1996). Time-space-size and focal 
mechanism constitute the major parameters of an earthquake. 
Their specification allows US to calculate static deformation or 
low-frequency seismograms for an event. 

In considering earthquake predictions, it is often implicitly 
assumed that ‘large’ earthquakes-those which are potentially 
damaging-can be forecast. However, because of earthquake 
self-similarity (see Section 4 below), it would be a major 
achievement, from a scientific point of view, to predict even 
small events. 

We define an earthquake prediction as a (probabilistic) state- 
ment about future earthquakes, which reduces the uncertainty 
of their occurrence compared to present knowledge. The state- 
ment must be statistically testable in a reasonable amount of 
time. Ideally, the time-dependent prediction can be defined as 
a formal rule (usually a computer algorithm) that predicts the 
rate of occurrence of earthquakes over some multidimensional 
interval of time, space and the seismic moment tensor. This 
rule should yield results significantly better than the Poisson 
estimate of the rate of occurrence (or the appropriate null 
hypothesis, see below). Most prediction efforts considered in 
this paper and elsewhere (see the references above) are based 
on simpler ideas. To bring some order into this diverse field, 
we try to classify earthquake forecast techniques. 

2.2 Prediction classification 

Several criteria can be used to classify earthquake prediction; 
we list and discuss some of them below. 

2.2.1 Existence of quantitative theory 

The great majority of proposed methods for earthquake 
prediction lack quantitative theory, thus they should be 
classified as empirical methods. Among these are earthquake 
clustering, in particular foreshock-main shock-aftershock 
sequences, seismicity variations, changes in seismic velocities, 
precursory strain, anomalous animal behaviour, variations in 
geochemical, hydrological and electromagnetic signals, etc. 
(Nishenko 1989; Ma et al. 1990 Lomnitz 1994). However, the 
only quantitative forecasting method currently available with 
a significant predictive skill is based on earthquake clustering 
(see Section 3.3.5). 

Two quantitative methods have been developed in recent 
decades which significantly advance our understanding of 
earthquake occurrence. ( 1) Global plate tectonics explains the 
strain accumulation on and near plate boundaries. In addition, 
due to recent technological advances, tectonic deformation can 
be measured by various geodetic and geological methods. Such 
measurements are becoming available even for intracontinental 
areas. (2 )  Linear elasticity theory predicts the static and low- 
frequency deformation due to earthquakes in the far field. 
Thus, the release of accumulated strain by earthquakes can be 
evaluated. The availability of these numerical methods has 
contributed to the development of several earthquake models 
such as recurrence models, seismic cycles, characteristic earth- 

quakes and seismic gaps. However, the interface between 
strain accumulation and its release is complicated due to 
the stochastic nature of seismicity. Thus, as discussed in the 
following sections, these simple earthquake recurrence models 
can be rejected by testing them against empirical evidence. 

2.2.2 Temporal clussification 

Predictions are frequently classified as short-term (up to a few 
months), intermediate-term (from one year to a decade) or 
long-term (a few decades or longer), according to the forecast 
lead time. However, these timescales are defined in varying 
ways, for example in terms of the technique used (Knopoff 
1996) or of available earthquake mitigation measures (Wallace 
et al. 1984). Thus, this classification is not intrinsic. Due to 
the scale-invariance of seismicity (Section 4), it is impossible 
to define the ‘natural’ scale for earthquake temporal features; 
however, two physical scales may be suggested: one connected 
to the propagation of elastic waves and earthquake rupture, 
and the other related to the velocity of tectonic deformation. 
The size of the earthquake focal area or of the zone of intense 
shaking suggests that the first scale is of the order of seconds 
or tens of seconds. Since accumulated strain is released mostly 
by the largest earthquakes (Section 4.3.1 ), the second timescale 
is on the order of decades or even millenia. 

2.2.3 Prediction-window spec$cation 

The least informative prediction indicates a time-space window 
where earthquakes are likely to occur without any numerical 
specification of the probability. Since almost all the putative 
prediction methods are still very preliminary, this is the usual 
form of prediction. An example of such a forecast is the M8 
algorithm (Keilis-Borok et a!. 1988; Keilis-Borok & Kossobokov 
1990), which identifies intervals of ‘times of increased prob- 
abilities’ (TIPs) for large earthquakes ( m  2 8 to m 2 7.5), using 
a pattern-recognition technique. It is not clear whether such 
TIPs in various regions have the same probability, nor what 
the level of the increased probability is compared to normal 
seismicity. 

Forecast accuracy can be improved if the probability value 
is indicated for selected zones of interest. An example would 
be Nishenko’s (1991) map of the circum-Pacific regions with 
more than 100 seismic zones for which the probability of large 
earthquakes occurring is calculated using the seismic-gap 
hypothesis. Verification problems are often encountered at 
the boundaries of such zones, where a small variation of an 
earthquake’s space-time-magnitude may determine the success 
or failure of the prediction (Jackson 1996b). 

The method which avoids the above difficulties assigns the 
probability to any infinitesimal seismic region: it formulates 
the earthquake prediction in terms of probability density or 
conditional rate of earthquake occurrence (e.g. Rhoades & 
Evison 1979; Kagan & Knopoff 1987; Evison & Rhoades 1994; 
Kagan & Jackson 1995). Some combination of the above 
methods is also possible. For instance, the spatial boundaries 
of a zone can be specified, whereas the temporal probability 
is stated as a continuous rate of occurrence per unit time 
(cf: Bakun & Lindh 1985). 
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2.2.4 Prediction types  

In Table 1 we list (in decreasing order of forecast precision) 
five prediction classes which have been employed or considered 
recently. 

( 1) Deterministic prediction: because the input data are 
the result of measurements, such a prediction is usually given 
some error bounds. Thus, the forecast should be issued in 
probabilistic terms. Examples are stress-accumulation models 
such as the time-predictable and slip-predictable schemes 
proposed by Shimazaki & Nakata (1980). In principle, if a 
deterministic algorithm is available, the whole earthquake 
process including the occurrence of small earthquakes and the 
details of large-earthquake rupture can be computed. 

(2) Specific earthquake prediction: the earthquake to be 
predicted is regarded as a recognizable entity. Usually only 
large earthquakes are expected to be predicted; characteristic 
earthquakes are an example of such models [e.g. the Parkfield 
prediction, see Bakun & Lindh (1985); or the Tokai prediction, 
see Mogi (19991. 

(3) Prediction models which specify the magnitude of a 
future earthquake. A precursor is assumed to supply additional 
information on the size of future earthquakes. Thus, upon 
a specific precursor observation, the conditional magnitude 
distribution of predicted events differs significantly from the 
standard Gutenberg-Richter (G-R) relation, 

log,, N(m)  = u - bm, (1)  

where N(m)  is the number of earthquakes with magnitude >m, 
a is the seismic productivity constant and b = 1. Examples of 
such methods are given in Rhoades & Evison (1979) and 
Weimer & Wyss (1994); in most other prospective prediction 
methods, it is assumed that predicted earthquakes have a 
special size distribution. An alternative size distribution for 
predicted earthquakes may specify a b-value for the G-R law 
which differs significantly from the usual b-value, or a change 
of the regular G-R relation into a different form. 

(4) Time-dependent seismicity: a time-dependent earthquake 
rate is predicted, the magnitude is assumed to obey the 
standard G-R law, and the rate or the U-value in (eq. 1) varies 
in space and time. The rate is defined as the number of earth- 
quakes exceeding a certain magnitude limit, per unit of time- 
space (the seismic-activity level). Examples include short-term 
prediction algorithms based on Omori’s law (Kagan & Knopoff 
1987; Reasenberg & Jones 1989). There are indications that 
focal mechanisms of earthquakes in a cluster or in aftershock 
sequences are correlated. Thus, the mechanisms of future events 
can be better predicted than by using a long-term average. 

Table 1. Earthquake prediction types. 

No Prediction Space Time Focal Magnitude 
Name Mechanism 

R T F m 

1 Deterministic + + + + 
2 Specific earthquake + + + + 
3 Magnitude specific + + +? + 
4 Timedependent + + +? - 

5 Time-independent + - - - 

( 5 )  Time-independent seismicity or carthqtiake potenli;ii 
(Wallace et c t l .  1984): a spatially inhomogeneous e:irthqtiah(, 
rate is evaluated, assuming that magnitudes follou the <; I: 
distribution. The determination of such earthquakc probabilit! 
is a standard procedure in seismic-hazard analysis (Kagan & 
Jackson 1994a; Working Group 1995). Although most geo- 
physicists would not consider such hazard evaluation t o  be 
a prediction, we discuss it in  some detail for two  reason^ 

(a) hazard analysis is the most important practical result t h a i  
earthquake seismology offers, and ( b )  static seismicity estimate\ 
are necessary in ahnost any testing of time-varying prediction\ 
as a null hypothesis (see below). 

In reality, the difference between classes ( 4 )  and ( 5 )  is mi 
as significant as it seems. As we argue in Section 4, the temporal 
interaction between earthquakes is governed by power-laa 
distributions: there is no sharp boundary between time-varying 
and static estimates of seismicity levels. These two prediction 
classes (4 and 5) can be compared to two methods of weathcr 
prediction (Murphy 1996): ‘persistence’ (assuming that future 
weather would continue recent history) and ‘climatological’ 
(that is taking a long-term average of the available record) 
forecasts. 

There is little doubt that forecasts of the last two types provide 
some information on earthquake-occurrence probabilities, but 
it is the first three classes which are usually considered by 
the general public and by a majority of geophysicists to be 
‘real’ earthquake predictions. For these prediction classes. 
earthquake precursors such as strain, geochemical, electric or 
other anomalies are assumed to exist in the ‘preparation’ zone 
of an earthquake and to carry information about the time. 
position and size of an impending earthquake. However. 
despite long and energetic efforts by researchers in several 
countries, investigating numerous proposed precursors, not 
one precursor has been demonstrated to have a statistically 
significant predictive power in the sense assumed by methods 
(1)-(3) in Table 1. 

3 PREDICTION EVALUATION A N D  
TESTING 

Earthquake prediction is intrinsically a statistical problem- 
the evaluation of predictions should be based on objective 
statistical tests. Moreover, randomness is the most obvious 
property of earthquake occurrence. Failure to recognize these 
facts and to apply modern stochastic theories and statistical 
methods is at the root of many difficulties in validating 
prediction schemes. Any proposed earthquake prediction 
scheme should be testable or fuls$uble to be of scientific 
value. Such testing is difficult because geological processes are 
generally slow; thus, in order to test a proposed method over 
a reasonable period of time additional assumptions are usually 
necessary. Following successful testing, prediction algorithms 
could be optimized. The problem has been discussed at length 
by Evison & Rhoades (1994) and Kagan & Jackson (1996). 
The recent VAN debate (Geller 1996b) shows clearly that our 
geophysical community lacks unambiguous methods for testing 
predictions. 

3.1 Prediction efficiency 

There is no consensus in the geophysical community about 
ways to characterize the efficiency or ‘goodness’ of earthquake 
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prediction methods. Some ideas can be borrowed from 
weather-forecasting methods (Murphy 1993, Table 2), but the 
types of processes used in both disciplines differ. In describing 
seismicity, we use point stochastic processes as a basic math- 
ematical model (Daley & Vere-Jones 1988; Vere-Jones 1995), 
whereas weather is described as a continuous process. 
Therefore, in the former case we predict the occurrence of an 
event or of a catastrophe, but in the latter case a continuous 
variable such as temperature is usually predicted (Molchan & 
Kagan 1992 and references therein). 

What criteria can be used to evaluate an earthquake 
prediction method? A predictive ratio (Kagan & Knopoff 1977) 
is the ratio of the conditional probability of earthquake 
occurrence (according to some model to be tested and to the 
predictive data D available) to the same probability according 
to the Poisson hypothesis: 

y = Prob(At, AM, AxlD)/Prob(At, AM, Ax), (2)  

where At, AM, Ax are time, seismic moment and space 
windows, respectively. The predictive ratio has been adopted 
by Vere-Jones (1978), who called it a ‘risk enhancement factor’. 
Rhoades & Evison (1979) called it a ‘risk refinement factor’ 
and Aki (1981) has called a similar quantity a ‘probability gain’. 

The probabilities for infinitesimal intervals are equivalent 
to rate intensities, that is i1 = Prob(dt, dM,  dxlD) and 
i,, = Prob(dt, d M ,  dx). For a catalogue of N earthquakes we 
can test whether the seismicity model yields a better approxi- 
mation than a Poisson model by calculating the likelihood 
ratio (Daley & Vere-Jones 1988, Ch. 13): 

r r  r 1 N  

L = e x p l - j  I , d t d M d x + J  & d t d M d x  
n n i = l  

(3) 

where R = R x M x T, R is the Euclidian 3-D space, T is time, 
M is the scalar seismic moment and Aj(i) is evaluated at the 
point of each earthquake occurrence (see Ogata, Utsu & 
Katsura 1996). The expression 

(4) 

can be interpreted as the amount of Shannon’s information 
(in bits) about any event that an observer gains through the 
use of a prediction algorithm (Kagan & Knopoff 1977). 

For prediction cases when the probabilities in eq. (2) are not 
known, two criteria are sufficient to prove the predictive value 
of a method (Molchan & Kagan 1992; Molchan 1997 and 

references therein): (a) the ratio of the total volume of alarm 
zones to the total volume of the region, s; (b)  the ratio of 
missed qualified earthquakes to the total number of such 
events, 11. A third criterion is frequently considered: (c) the ratio 
of the number of unsuccessful alarms to the total number of 
alarms, p. For a simplified comparison, we put these prediction 
aspects into Table 2. Parameters z, v and p can be considered 
as normalized prediction errors, their values being limited 
between zero and one. Reasenberg & Matthews (1988) intro- 
duced similar parameters for prediction effectiveness, validity 
( V )  and reliability (R) ,  which are v = 1 - R and p = 1 - V .  The 
average predictive ratio ij can be defined in this case as 
(Molchan 1997, p. 236) 

f = ( 1  -v)/z.  ( 5 )  

P = l - v - z ,  0 I P 1 1 ,  (6)  

Feng et a!. (1984) proposed a precision standard, 

to characterize the efficiency (see also Molchan & Kagan 
1992). The above equation ensures that issuing random alarms 
or using information which is not correlated with earthquake 
occurrence cannot qualify as a forcasting method, since for 
such a method P z 0. 

The ideal prediction method should have 

z = v = p = O .  (7) 

Real (non-ideal) prediction methods cannot have the values of 
all errors in eq. (7)  equal to zero. The best performance one 
should expect for a prediction technique is that the error values 
are sufficiently small. The predictive ratio (eq. 5) or the pre- 
dictive power (eq. 6) d o  not depend on the p-value; one should 
try to reduce the false-alarm rate (Molchan & Kagan 1992) 
only when it is proven that these parameters are greater than 
zero for a prospective predictive method. Similarly, discussion 
of a useful prediction method would be premature, unless its 
predictive skill is established. 

The above discussion of prediction efficiency provides an 
opportunity for an additional classification of forecast methods 
useful in our consideration of prediction testing. Let us consider 
several (limiting-case) methods which have at  least one of the 
errors significantly larger than zero. For an easier comparison, 
we show these prediction schemes in Table 3. Prediction 
class (A) corresponds to a partially ideal prediction, since it 
has a real predictive power ( P  + 1) (Molchan & Kagan 1992). 
The short-term earthquake prediction proposed by Kagan & 
Knopoff (1987) can be considered as an approximation of 
the class (A) method (Section 3.3.5). Predictions of classes (B) 

Table 2. Short definition and mutual relation of prediction characteristics. 

Aspect Symbol Definition Relation 

Alarm size 
Missed events 
False alarms 
Accuracy 
Reliability 
Validity 
Predictive ratio 
Precision 
Likelihood ratio 
Information content 

T 

V 

P 
A 
R 
V 
r7 
P 
L 
I 

Ratio of total volume of alarm zones to total volume of region 
Ratio of missed qualified earthquakes to total number of such events 
Ratio of number of unsuccessful alarms to total number of alarms 
Ratio of total volume of safe zones to total volume of region 
Ratio of successfully predicted qualified earthquakes to total number of such events 
Ratio of number of successful alarms to total number of alarms 
Number of successfully predicted events relative to forecast using the null hypothesis 
Difference between prediction errors and forecast using the null hypothesis 
see eq. ( 3 )  
see eq. (4) 

A = l - T  
R = l - v  
v= 1 - p  
z = l - A  
v = l - R  
p = l - V  
ij = ( 1 - v)/. 
p = l - V - T  
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Table 3. Earthquake prediction methods and their errors. 

Prediction Ideal Prediction classes 
error prediction (A) (B) ( C )  

Alarm size ( T )  0 l o  l o  t 1  
Missed events ( v )  0 l o  5 1  l o  
False alarms ( p )  0 r l  . to  l o  

In the table, T1 means that the value of the prediction error is 
approaching 1 from below, and 10 means that the error is positive 
and close to zero. 

and (C) cannot have a significant predictive power, since either 
v or z is close to 1 (see eq. 6). 

One of the prediction methods of class (B) is the trivial 
‘optimist strategy’ (Molchan & Kagan 1992) of never declaring 
an alarm. Another example of (B) can be realized, for example, 
by a ‘prediction’ of small earthquakes. According to the G-R 
relation (eq. l), the number of earthquakes increases by a 
factor of 10, as the magnitude decreases by one unit. Thus, 
one can have a very small false-alarm rate, even when issuing 
random alarms, since each alarm occupies a small fraction of 
the total volume. A prediction of class (C) can be realized by 
using the trivial ‘pessimist strategy’ (Molchan & Kagan 1992) 
of alarm declaration over the entire region. In such a case, 
there are no missed earthquakes and no false alarms. Another 
prediction of type (C) is to issue a few alarms which collectively 
occupy most of the volume available for a prediction (see 
Section 3.3.1 for further discussion). 

3.2 Prediction testing-challenges and choices 

The above comments call for further discussion of the 
criteria for accepting or rejecting statistical hypotheses related 
to earthquake forecasts. Earthquake prediction presents a 
special problem because no appropriate theory of earthquake 
occurrence exists, earthquake data is difficult to interpret and 
the earthquake process has many dimensions. Ideally, earth- 
quake prediction experiments should be organized according 
to  the rules proposed by Jackson (1996a) or Rhoades & Evison 
(1979, 1996) and Evison & Rhoades (1994). 

3.2.1 Null hypothesis 

The testing of earthquake predictions must include com- 
parison with the null hypothesis that the claimed prediction 
successes are due to chance. The null hypothesis should 
include well-known spatial variations and temporal clustering 
of seismicity (Kagan & Jackson 1996). The formulation of the 
null hypothesis for large earthquakes (rn 2 7) is relatively easy, 
since the clustering of these earthquakes is weak, at least on 
the timescale of a few years. Thus, the Poisson process can 
often serve as a null hypothesis. However, even in this case, 
spatial inhomogeneity of earthquake epicentres challenges the 
verification process (Kagan & Jackson 1995). For moderate 
earthquakes (7 2 m 2 5 ) ,  the simple Poisson process is no 
longer an acceptable null hypothesis. These earthquakes are 
strongly clustered, the best-known example of which is after- 

shock sequences. Thus, the null hypothesis should include 
clustering as its major feature. 

Three models can thus be proposed for the null hypothesis; 
for all the hypotheses the magnitude is distributed according 
to the G-R distribution (eq. 1). (a) Zeroth-order model: earth- 
quakes are distributed uniformly randomly in space and time, 
their focal mechanisms randomly rotated. Thus, earthquakes 
follow a spatially and temporally homogeneous Poisson pro- 
cess. This scheme may be an appropriate model for seismicity 
in intracontinental regions where the data on tectonic earth- 
quakes are missing or insufficient. (b) First-order model: space 
and focal mechanisms are assumed to follow an average 
seismicity pattern, time is uniformly random, that is we assume 
that earthquakes follow a spatially inhomogeneous Poisson 
process. (c) Second-order model: the temporal clustering of 
earthquakes is modelled. The earthquake process is a spatially 
inhomogeneous cluster Poisson process (Kagan 1991; Ogata 
1998). 

A convenient artifice for constructing a null hypothesis is to 
randomize the times and locations of either the earthquakes 
or the predictions. Such randomization must be done with 
care, because both the earthquakes and the predictions have 
some statistical structure (they are not uniformly distributed 
in time and space), and a reasonable null hypothesis should 
preserve this structure. This is an especially important issue 
since predicted events can be either aftershocks or members of 
earthquake clusters. Kagan (1996b) proposed two methods for 
the accounting of earthquake clusters: ( 1 ) declustering an 
earthquake catalogue; and (2 )  using a null hypothesis which 
explicitly includes clustering (‘alternative prediction’). 

Stark (1996) argued that since earthquake times and places 
are difficult to simulate accurately, it is preferable to compare 
the success rate of a prediction algorithm with the success 
rate of ‘random’ algorithms. Aceves, Park & Strauss (1996) 
randomized the prediction set. However, we argue that the 
statistical properties of seismicity have been studied extensively, 
while the predictions may have a non-uniform distribution 
that is not characterized sufficiently well to be randomized 
with confidence. Moreover, the randomization of predictions 
cannot effectively test the schemes which use (not always 
wittingly) the seismic record to forecast earthquakes (Stark 
1997). If, for example, one issues alarms during periods of high 
seismic activity, the comparison with randomized predictions 
may show significant advantage to the method. However, such 
predictive power may be due solely to the non-randomness of 
the earthquake occurrence, not to the method’s intrinsic 
effectiveness. 

Mulargia & Gasperini ( 1992) tested predictions in forward 
and reverse time. They argued that if the reverse test shows a 
better correlation between the predictions and earthquakes, it 
means that the predictions have been issued preferentially after 
a strong earthquake has occurred. Therefore, the forecast’s 
success is due to earthquake clustering. In earthquake 
sequences, a main shock is by definition stronger than after- 
shocks or foreshocks; thus, for numerous sequences of relatively 
weak events, only a main shock would have a magnitude 
larger than the cut-off level. An alarm issued after the first 
event in a cluster would probably be more ‘successful’ if tested 
in reverse than in forward time. However, hypothetically, such 
a test can be defeated by issuing predictions each time for 
earthquakes stronger than those that triggered the alarm. 
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Why is earthquake temporal clustering such an important 
issue? A prediction technique can either use earthquake- 
clustering information directly (for example, preferentially 
issuing alarms during times of high seismic activity), or 
Go-seismic and post-seismic earthquake signals may trigger an 
alarm. Thus, precursory non-seismic anomalies might appear 
to have some predictive capability, but this would actually 
occur purely from earthquake clustering. A null hypothesis 
that neglects such clustering might perform worse than the 
precursory-anomalies hypothesis, even though the anomalous 
phenomena lack real intrinsic predictive power (Stark 1997). 
Until prediction methods can outperform the prediction 
schemes which specifically use the clustering algorithm (see 
Section 3.3.5), or can show that their information gain 
is statistically independent of earthquake clustering, these 
methods should be ignored. 

Another problem connected with earthquake clustering is 
whether one can predict the magnitude of a future earthquake, 
aside from a trivial statement that the magnitude follows the 
G-R law (Section 2.2.4). As discussed in the previous para- 
graph, a potential method, claiming to belong to class 3 
(Table 1) and showing a statistically significant advantage over 
a null hypothesis, may have predictive power through direct 
or indirect use of earthquake clustering. Whether a prospective 
method yields any specific information on earthquake size 
distribution needs to be tested. 

3.2.2 Other testing problems 

As we discuss in Section 2.2.3, sharp magnitude-space-time 
boundaries in the alarm zones can cause instability in statistical 
tests. According to formal criteria, if an earthquake epicentre 
falls short of the zone even by a few kilometres such an event 
is scored as a failure. Similarly, magnitude thresholds in a 
forecast are often expressed as sharp cut-offs. Small-magnitude 
variations often result from use of either a preliminary, not 
final, catalogue or differing magnitude scales. These variations 
can again make the difference between accepting and rejecting 
a hypothesis. Real seismicity lacks sharp boundaries in space 
and magnitude. Sensitivity to various parameters can be 
significantly reduced by specifying an earthquake probability 
density for all the magnitude-space-time windows of interest 
(Section 2.2.3). 

What significance level should we seek when testing for 
potential precursors? The frequently used 5 per cent level 
signifies that even if the sample selection process is fair, 
unbiased and without hidden systematic errors, the null 
hypothesis would be rejected in one case out of 20 due to 
random fluctuations. Several hundred publications and con- 
ference presentations per year explore possible earthquake 
precursors. Moreover, negative results have a much lower 
probability of being reported, that is the sample is biased. 
Thus, the total number of attempts to  find precursors is even 
higher. Although at  present very few precursor reports validate 
their claims statistically, if the tests are carried out under the 
5 per cent rule it would mean that many (tens) of precursors 
would have been ‘confirmed simply by chance. Therefore, the 
significance level selected for null-hypothesis rejection should 
be much lower than the usual 5 per cent (Anderson 1992; 
Kagan 1997b). A level of 0.5 per cent or less would be more 
appropriate (Aceves et nl. 1996). 

All kinds of subtle and not-so-subtle biases and systematic 
errors are possible if one searches for ‘anomalies’ or ‘patterns’ 
in a large amount of data. The recent availability of high- 
speed, low-cost computing makes such extensive searches 
feasible. Rules for identifying precursors can be adjusted to fit 
the data (Mulargia 1997); hidden degrees of freedom may be 
introduced in the testing procedure (that is the selection of 
region boundaries in space-time-magnitude and the selection 
of the earthquake database). Studies using posterior adjustment 
of parameters may be evaluated using statistical tests for 
hypotheses with a prior; fixed parameters (Geller 1997). 

A comparison with research techniques in medicine may be 
useful here (cJ: Lomnitz 1994, pp. 265-266). The complexity of 
a human organism and the possibility of a patient-doctor- 
treatment interaction resulting in various biases have led 
medical researchers since the 1940s to ‘double-blind placebo- 
controlled’ experiments as the standard method (see e.g. White, 
Tursky & Schwartz 1985, in particular Chapters 3 and 5-7). 
Although some elements of this statistical methodology- 
such as the use of prediction or earthquake-occurrence ran- 
domization (see a b o v e k c a n  be incorporated into earthquake 
prediction verification, unfortunately such double-blind experi- 
ments are impossible in earthquake seismology. However, as 
in medical science, possible systematic errors and artefacts of 
various kinds must always be taken into account. At present, 
we d o  not see any effective methods for retrospective inter- 
pretation of seismic and geological data which would be 
completely free of possible biases. 

3.2.3 Testing methodology 

It is possible that the only way to avoid the pitfalls described 
above is to specify the formal rules for the forecast and for its 
validation in advance of the test (Jackson 1996a; Evison & 
Rhoades 1994; Rhoades & Evison 1996). Therefore, the follow- 
ing methodology can be proposed for the testing of earthquake 
prediction schemes. 

(1) Case-history investigations: these studies should satisfy 
the criteria formulated, for example, by the IASPEI group 
(Wyss & Dmowska 1997, pp. 13-14). However, case histories 
of ‘successful prediction’ of one or of several earthquakes d o  
not demonstrate that a method has predictive power, since 
such success may be due to chance or to a selection bias. 
Since seismicity is characterized by extreme randomness, it is 
possible, in principle, to  select almost any pattern from large 
amounts of data (Kagan 1994). Only formal and rigorous tests 
of the statistical significance of proposed prediction algorithms 
prove predictive skill (Kagan & Jackson 1996). 

(2) Large-scale retrospective rigorous statistical testing using 
a control sample, that is data which were not considered in 
formulating the working hypothesis and evaluation of adjust- 
able parameters for the model. The null hypothesis should be 
formulated and tested against the same data. 

(3) Forward prediction testing, during which no adjustment 
of parameters is allowed and all relevant possible ambiguities 
in data or the interpretation technique are specified in advance 
(Evison & Rhoades 1994; Kossobokov et al. 1997). 

In future, when earthquake prediction models are tested, 
special attention should be paid to the formal definition of 
what is predicted, and how the prediction can be tested. For 
a prediction to be testable, it needs to be issued for as large a 

0 1997 RAS, G J I  131, 505-525 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/131/3/505/2140303 by guest on 24 April 2024



512 Y. Y. Kagnn 

region as possible, even if this would entail a less efficient 
prediction. 

3.3 Prediction-testing examples 

In this section we discuss several proposed prediction tech- 
niques. They have been selected to demonstrate problems and 
challenges in testing earthquake forecasts. 

3.3.1 VAN predictions 

Varotsos et aI. (1996a,b and references therein) claimed to 
predict earthquakes in Greece using ‘seismic electric signals’. 
Their method is better known as VAN, after the initials of 
Varotsos, Alexopoulos & Nomicos (1981) who were the 
authors of the first paper on this scheme. In 1981 VAN claimed 
to be able to  detect electrical signals 7 hr F 30 min before every 
earthquake of m 2 2.6 within 80 km of their observatory. By 
1996, Varotsos et al. (1996a,b) claimed to be able to predict 
time-space-magnitude parameters of impending earthquakes 
with an accuracy in time (At) of the order of a few weeks, a 
space uncertainty (AT) of 100-120 km and a magnitude error 
(Am) of k0 .7  units. Thus, the VAN method should be classified 
as being of type (3) in Table 1. The early applications of the 
VAN model can be classified according to class (B) in Table 3 
(practically no false alarms, because the magnitude threshold 
is very low, see above). Apparently, in an effort to miss fewer 
large earthquakes, VAN modified their method to increase the 
time and space window, so the contemporary procedure is 
close to class (C) in Table 3. 

The VAN debate (Geller 1996b) and a recent book (Lighthill 
1996) discuss verification of the VAN predictions. Because 
VAN prediction parameters have not been unambiguously 
specified, there has been no consensus on the VAN testing 
results. Kagan & Jackson (1996) point out the reasons why 
the VAN validation cannot be carried out: (1) the VAN 
performance is significantly ‘improved’ because they issue 
alarms, not a t  random, but usually after a strong earthquake; 
(2) VAN ‘enhance’ the predictive power of the method further 
by using alarm zones of significant size; (3) the time and 
magnitude windows are not clearly stated in the prediction 
announcements; (4) VAN adjust their prediction rules retro- 
spectively; and ( 5 )  they simply violate these rules. Moreover, 
the adjustment of prediction parameters continued even during 
the publication of the above volumes. For example, in their 
paper, submitted at the end of 1993, Varotsos et al. (1996b) 
suggested that the time window for almost all of the VAN 
predictions is 11 and 22 days. However, Varotsos et al. (1996b) 
have claimed success for an earthquake on 1993 June 13 that 
occurred over two months after the prediction was issued. 
Another earthquake (1994 April 16) occurred 47 days after 
their ‘prediction’. Thus, large time windows were used even 
from 1994 until 1996, when the debate papers (Geller 1996b) 
were published. Varotsos & Lazaridou (1996, p. 1397) 
suggested that only 70 per cent of VAN predictions should 
satisfy the strict prediction rules; for the rest of the alarms the 
limits on Am, At  and Ar can be relaxed. 

Varotsos et aI. ( 1996b) acknowledged issuing 67 ‘predictions’ 
during the 8.4 years from February 1987 to June 1995 for 
earthquakes with magnitude m l 5 .  Out of 67 forecasts 27 
were double ‘predictions’, giving a total of 94 ‘predicted’ 
earthquakes. One could completely span an 11.2 years period 

by issuing 67 predictions at VAN‘s current mariinull! ,,lie 

window of 2 months. I n  addition. VAN predictions arc C‘ . l L I -  
ated not in real time but long after the alai-ms eiiti. \ ’  .icI1 

seismicity data are available, making it  possible to s e l c ~  i t l e  

largest earthquake in an alarm window and to adjust [hi.  ,lie 

window to fit the data. Thus. VAN’s published  stater^^ j ~ [ ~  

about their windows are based on ( I  posteriori cori. 
with subsequent seismicity. In  effect, VAN’s basic pi-occdii I\;  

to issue a ‘prediction’, wait until an earthquake occur\. ld 
then claim ‘success’, almost regardless of the discrcpanw ~ 111 

space, time and magnitude (Geller 199621). These circumsr,i. -5 

make any rigorous testing of VAN forecasts iinpossiblc ,d 
pointless. 

3.3.2 Purkfield prediction 

‘Characteristic’ m % 6 earthquakes were thought to OCCIII’ 

the San Andreas fault in Parkfield, California. at inten;il 
approximately 22 years; the last such event occurred i n  1 ’  
(Bakun & Lindh 1985). They proposed that there wits i i  

per cent probability ‘the next characteristic Parkfield txi : 

quake’ would occur before 1993, and the US Geological SUI-I 
established the ‘Parkfield Earthquake Prediction Experimzi 
(Roeloffs & Langbein 1994). This ‘experiment’ basicallq CI 

sists of setting up instruments in the hope of recordin? p i  
cursors. Since 1985 there have been no significant eart1iqit;ik 
at Parkfield, but damaging earthquakes (1989 Loina Prici 
1992 Landers, 1994 Northridge) have occurred elsewhere I 

California. 
Lomnitz (1994) and Kagan (1997b) noted that. assuming 

Poisson process with reasonable parameters, there is a higl 
probability that apparently periodic seismicity would occti: 
randomly somewhere in Southern or Central California. Thu\. 
the quasi-periodic sequence of characteristic Parkfield eart 11- 
quakes can be explained by selection bias. Kagan (1997bi 
argues that the null hypothesis (the Poisson process plus lhc 
G-R relation) is conceptually less complex than other models. 
and should not be rejected unless there is statistically significant 
evidence to the contrary. The observed magnitude-frequent! 
curves for small and intermediate earthquakes in the Parkfield 
area conform to the theoretical distribution computed on the 
basis of a modified G-R law (modified gamma distribution ~~ 

see Section 4), using deformation rates for the San Andreas 
fault (Kagan 1997b). According to the null hypothesis the 
return time for an m 2 6 earthquake with an epicentre in the 
Parkfield area is more than 100 years. Thus, the experiment 
may need to run for several more decades before a moderate 
or large earthquake occurs in the area. With regard to statistical 
tests, the Parkfield experiment, by its design alone, cannot 
answer the question of the validity of the characteristic/quasi- 
periodic model. Even if an earthquake similar to the one 
predicted were to occur, it would not be a sufficient basis for 
drawing statistically significant conclusions (Savage 1993; 
Kagan 1997b). 

The Parkfield and Tokai (Mogi 1995) experiments have not 
been designed to test the seismic-gap hypothesis, which is their 
scientific basis. On the contrary, the experiments have been 
planned under the assumption that the gap model is correct 
and ready to be implemented. Therefore, when the expected 
earthquakes failed to occur, the current results of the experi- 
ments seem to reject the original model (see also Savage 1993), 

‘I 

,I 
1 

-i 
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but they cannot verify or reject the gap hypothesis-the 
experiments are not falsifiable. 

3.3.3 

The earthquake-recurrence hypothesis, which goes back to the 
elastlc rebound ideas of Reid (1910), was used extensively by 
Kelleher, Sykes & Oliver (1973), McCann et a/. (1979), 
Nishenko (1991) and others. The recurrence model has been 
formulated in several variants. The best known of these is the 
seismic-gap hypothesis adopted by the US Geological Survey 
as the only official procedure used to predict earthquake 
probabilities in California and in the circum-Pacific (Agnew 
& Ellsworth 1991). The seismic-gap hypothesis was developed 
from a qualitative model in the 1970s and early 1980s (Kelleher 
et al. 1973; McCann et al. 1979) to a more quantitative scheme 
with a numerical estimate of earthquake probabilities in gap 
zones (Nishenko 1991). The hypothesis uses the following 
assumptions: ( 1) earthquakes occur on geologically recognized 
faults, thus the locations and focal mechanisms are known; 
(2) large earthquakes are quasi-periodic; after a strong shock 
the probability of a further large event is low, and it increases 
as time elapses; (3) the earthquake size distribution on 
‘individual’ faults is described by the ‘characteristic earthquake’ 
model, which states that on each fault segment a large earth- 
quake is exclusively characteristic, and that this earthquake 
ruptures the entire length of the segment. 

There are many publications and predictions based on 
recurrence models of seismicity (Agnew & Ellsworth 1991). 
Unfortunately, almost all share the same drawbacks as those 
of the Parkfield prediction discussed above: since the pre- 
dictions are issued for relatively small regions, only one or a 
few gap earthquakes are expected to occur during the next 
few years. Therefore, most predictions are not testable in a 
reasonable time period. A series of publications by Kelleher 
e t  a/. (1973), McCann et al. (1979) and Nishenko (1991) 
compare favourably by issuing a homogeneous set of pre- 
dictions for almost the entire circum-Pacific rim. Thus, a few 
years after the publication of the predictions, it would be 
possible to make a quantitative comparison of the forecasts 
with the seismicity record (forward testing) and attempt to 
validate the gap hypothesis. Kelleher et al. (1973, p. 2553) 
suggested that ‘the most realistic test [of the forecasts] will 
lie in the locations of large earthquakes during the next few 
decades’. Although the predictions are somewhat vague and 
ambiguous, and thus disagreement on the testing results is 
unavoidable (Kagan & Jackson 1991; Nishenko & Sykes 
1993; Jackson & Kagan 1993; Kagan & Jackson 1995), some 
important conclusions can be drawn from these tests. 

Probability estimates for earthquakes in zones can be 
evaluated using three tests (Kagan & Jackson 1995; Jackson 
1996b): (1) the total number of zones filled by earthquakes, or 
the number of earthquakes in various zones; (2) the likelihood 
that the observed list of filled zones would result from a 
process with the probabilities specified; and (3) the likelihood 
ratio to that of a Poissonian null hypothesis. Earlier predictions 
(Kelleher et al. 1973; McCann et al. 1979), which specify only 
a qualitative measure of a seismic-zone hazard, can only be 
tested by using the first method-comparing the numbers of 
zones with qualified earthquakes and the number of earth- 
quakes in various zones. Kagan & Jackson (1991) tested the 
hypothesis that the ‘dangerous’ gaps are significantly more 

Seismic gaps and characteristic earthquakes 

likely (by a factor of 2 or more) to experience strong earth- 
quakes than the ‘safe’ zones. We show that the hypothesis 
can be rejected with more than a 95 per cent confidence level, 
and find that strong earthquakes have occurred preferentially 
near the sites of previous, recent, large events. Most plate- 
boundary segments unruptured in a previous century remain 
unruptured still. 

Kagan & Jackson (1995) tested Nishenko’s (1989) seismic- 
gap model using tests (1)-(3) described above. Nishenko (1991) 
gave probabilities that each of about 100 zones would be filled 
by characteristic earthquakes during various periods beginning 
in 1989. The null hypothesis uses a smoothed version of 
seismicity since 1977 (see Section 3.3.6 below) and assumes a 
G-R magnitude distribution (eq. 1). Kagan & Jackson (1995) 
used both the Harvard centroid moment tensor (Dziewonski 
et al. 1996) and the preliminary determination of epicentres 
(US Geological Survey 1996) catalogues in testing. Since 
Nishenko’s forecast did not specify a clear relationship between 
the characteristic earthquake magnitude and the threshold 
magnitude for a successful prediction, Kagan & Jackson (1995) 
also used several different magnitude cut-offs in the tests. Using 
a strict interpretation that only earthquakes equal to or larger 
than the characteristic magnitude should be counted, the P D E  
catalogue in 1989-1996 shows only three qualifying earth- 
quakes in the entire area covered by the forecast. For the 
Harvard catalogue the number is five. The predicted number 
(Nishenko 1991) for this period is 12.7, and the discrepancy is 
too large to result from chance at the 98 per cent confidence 
level. The new (Nishenko 1991) seismic-gap hypothesis predicts 
too many characteristic earthquakes for three reasons. First, 
forecasts were made for some zones specifically because they 
had two or more large earthquakes in the previous centuries, 
biasing the estimated earthquake rate. Second, open intervals 
before the first event and after the last event are excluded in 
calculating the recurrence rate. Third, the forecast assumes 
that all slip in each zone is released in characteristic earth- 
quakes of the same size, while in fact considerable slip is 
released by both smaller and larger earthquakes (Kagan 
1996a). 

The observed size distribution of earthquakes is inconsistent 
with the characteristic earthquake hypothesis: instead of a 
deficit of earthquakes above and below the characteristic limit, 
earthquake numbers are distributed according to the standard 
G-R relation. Fig. 1 shows the relative magnitude distribution, 
measured with respect to  the estimated characteristic magni- 
tude, summed (stacked) over all forecast zones during two 
different time periods. The first time period (1968 July 1-1989 
January 1) overlaps with the learning period during which the 
forecast zones were defined, and appears to show a slight 
‘knee’ a t  the characteristic magnitude. During a later time 
period (1989 January 1-1996 July 1) this knee disappears. The 
contrast between the two curves shows that the apparent 
preference for characteristic earthquakes in the earlier period, 
slight as it is, comes more from the pre-selection of data rather 
than a true preference for characteristic-magnitude earth- 
quakes. The dash-dotted and dashed curves in Fig. 1 show the 
idealized G-R and the characteristic distributions, respectively. 
Even in the earlier data with the selection bias, the enhance- 
ment of characteristic earthquakes relative to the G-R model 
is only a factor of 2, and this enhancement disappears in the 
later data. The stronger enhancement predicted by the idealized 
characteristic model does not find support in either data subset. 
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Figure 1. Distribution of PDE magnitude differences for two time 
periods: 1968 July 1-1989 January 1 and 1989 January 1-1996 July 1, 
calculated relative to the characteristic magnitude (Nishenko 1991). 
Asterisks: time interval 1968 July 1-1989 January 1; crosses: time 
interval 1989 January 1-1996 July 1; dash-dotted line: the G-R 
relation; dashed line: the predicted distribution of characteristic 
magnitudes. 

By lowering the magnitude threshold for qualifying earth- 
quakes, it is possible to reduce the discrepancy between the 
observed and predicted number of earthquakes (Nishenko 
1991) to  an acceptable level. However, for every magnitude 
threshold Kagan & Jackson (1995) tried, the new seismic-gap 
model failed the test on the number of filled zones, or the 
likelihood ratio test, or both, at the 95 per cent confidence level 
a t  least. Therefore, no version of the seismic-gap hypothesis 
has yet shown a significant statistical advantage over a 
reasonable null hypothesis. 

3.3.4 Forward predictions 

Possibly there are only two kinds of experiments that fully 
satisfy the criteria proposed in Section 3.2.3: the M 8  algorithm 
(Keilis-Borok et al. 1988; Keilis-Borok & Kossobokov 1990) 
and the precursory swarm model of Rhoades & Evison (1979) 
and Evison & Rhoades (1993). 

The M 8  scheme for predicting large earthquakes is currently 
being tested. The tests started 1991 July 1 in the circum-Pacific 
seismic belt, where 147 overlapping circles are specified 
(Kossobokov et al. 1997). The test is assumed to run until 
1997 December 31. In the time period ending 1995 July 1, the 
dangerous intervals (TIPs) occupied 283 half-year intervals 
out of 1174 possibilities. Five earthquakes m 2 7.5 out of the 
total of nine events occurred in TIPs. The authors also made 
a retrospective prediction for the same region in the period 
1985 January 1-1991 July 1. The results of the a posteriori 
forecast are significantly better than those of the real-time 
prediction: eight out of 10 earthquakes have been successfully 
predicted (Kossobokov et al. 1997, p. 228). 

The null-hypothesis algorithm, which randomizes earth- 
quake occurrence without taking into account different 
seismicity levels in seismic zones, ‘... performed as well as or 
better than M8,  53.30 per cent of 1000 000 realizations ...’ 

(Kossobokov et d. 1997, p. 228). On the other hnl1d. the 
retrospective prediction performed considerably bettet- tilan 
a null hypothesis. As of 1997 May 14, the M 8  algoi.ithm 
successfully predicted 10 out of 18 earthquakes with 1 1 1  2 7.5 
(Kossobokov, private communication 1997). These prelin1111ary 
results suggest that the performance of the M 8  algorithm I >  not 
significantly better than a random guess (the null hypo( hcsis) 
and again emphasize the important differences between i-clro- 
spective and forward forecasts. Dieterich ( 1993) indicated that 
if one weights the null hypothesis according to ‘... historical 
rate of seismicity in each circle’, the results of comparison inay 
change significantly in favour of the null hypothesis. 

The original precursory swarm model of Rhoades & Ewion 
(1979) performed poorly when tested, and was rejected 
(Rhoades & Evison 1993). A revised model was then tested, 
and performed at about the same level as the existing statiomry 
Poisson model (the null hypothesis). Next, a further modifi- 
cation was introduced, and is at present being tested (Rhoades 
& Evison, private communication, 1997). 

3.3.5 Short-term predictions 

Short-term prediction based on the generalized Omori’s lav, is 
the only available method for which a predictive power can 
easily be demonstrated (Kagan & Knopoff 1987; Ogata 19x8; 
Reasenberg & Jones 1989; Kagan 1991; Ogata et a/. 1996). 
The earthquake predictive ratio in the wake of even a moderate 
event rises instantaneously by a factor of many thousand. 
Most of the following events are weaker than the first one and 
are thus called aftershocks, but in a small percentage of cases 
the following earthquake turns out to be larger than the 
previous one. In such cases the first event is called a foreshock, 
and the following earthquake a main shock. 

In principle, Kagan & Knopoff’s (1987) algorithm allows a 
real-time automatic calculation of earthquake probabilities. 
The technique used is completely formal and does not require 
human-operator intervention. Hence, the prediction results can 
be tested objectively. Proof of the predictive power can be 
obtained by calculating the likelihood ratio (eq. 3). If the 
magnitude range of a catalogue is relatively large (more than 
1.5-2.0), the information content is of the order of 0.5-2.0 
bits per earthquake. The uncertainty in the earthquake rate 
occurrence can be reduced by a factor of 1.5-4 on average 
compared to a long-term estimate. Kagan (1991) presented 
evidence that, for the best available catalogues, the pre- 
dictability may be close to 10 bits per earthquake (eq. 4), that 
is the uncertainty can be reduced by a factor of up to 1000 
(21°). The reduction of uncertainty represents an average of a 
very strong predictive ratio in the aftermath of a large earth- 
quake and a practical lack of new information for most 
earthquakes which are not members of a cluster. Unfortunately, 
as shown in Table 2 of Kagan (1991), the high likelihood-ratio 
values are largely due to  a near-singularity of the earthquake 
rate at about the time each event occurred. It means that the 
‘best’ prediction is available in the immediate aftermath of 
every earthquake. Earthquake catalogues are unreliable at the 
beginning of large aftershock sequences, when a seismographic 
network and seismologists are overwhelmed by the number of 
events. These catalogue deficiencies may also bias our estimate 
of model parameters significantly. Thus, the model with the 
maximum likelihood may not be the ‘best’ one in approximating 
earthquake occurrence. 
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The predictability would increase further for real-time pre- 
diction (Section 5.3), but the value of this information would 
decrease since the prediction lead time is very small. However, 
in this case short-term foreshocks and the initial stages of 
largeearthquake rupture, which can also be classified as 
immediate foreshocks, reliably warn of a catastrophic event. 

TO be effective, short-term alarms should be issued after 
each earthquake, since any event may be a foreshock. Thus, 
the number of false alarms is very large for such a method. 
Since only about 1/4 to 1/3 of earthquakes are preceded by 
foreshocks sufficiently separated in time from the main shocks 
(Kagan & Knopoff 1987; Reasenberg & Jones 1989), the 
reliability of forecasts (see Table 2) is low. Suppose we predict 
m 2 6 earthquakes using a network with a magnitude cut-off 
m = 2. Then, depending on the prediction threshold, about lo4 
alarms would be generated according to the G-R law for each 
predicted event. If an alarm is declared after stronger earth- 
quakes, the number of alarms would be smaller, but the 
reliability of prediction would decrease (Kagan & Knopoff 
1987). Thus, only mitigation strategies which have low alarm- 
initiation costs can benefit from this prediction method 
(Molchan & Kagan 1992). 

3.3.6 Seismic hazard 

Kagan & Jackson (1994a) estimated long-term worldwide earth- 
quake probabilities by extrapolating the Harvard catalogue 
(Dziewonski et al. 1996) of 1977-1994. The forecast is expressed 
as a map showing predicted rate densities for earthquake 
occurrence and for focal-mechanism orientation. In Fig. 2 we 
display a hazard map for the Northwest Pacific. For temporal 
prediction we use the Poisson model for the distribution of 
earthquakes in time. In estimating earthquake probability 
maps, we use the first half of the catalogue to smooth the 
seismicity level, and the second half of the catalogue to validate 
and optimize the prediction. Moreover, the maps can be used 
as the Poisson null hypothesis for testing by the likelihood 
method against any other prediction model which shares 
the same sample space (the same zones, time window and 
acceptance criteria). 

How can we evaluate these predictions? One possibility is 
to test the internal consistency of the forecast: we simulate 
earthquake sequences using the forecast maps and compare 
the likelihood of these synthetic catalogues (Kagan & Jackson 
1994a) with those of a control catalogue. In Fig. 3 we display 
bootstrap distributions for prediction and data, as shown in 
Fig. 2. We simulate earthquake locations with R,, = 350 km 
(Kagan & Jackson 1994a, p. 13 696), each time calculating the 
likelihood function and comparing the function value with 
that obtained for the real catalogue in 1995-1996. Whereas 
the choice of R,,,=350km was close to optimal for the 
prediction of the second half of the catalogue (1986-1994), it 
is clear that for the 1995-1996 seismicity R,,, = 175 km is 
a more appropriate smoothing function. Thus, a forecast of 
all 1995-1996 earthquakes, using the 1994 model with 
R,,, = 350 km, would have failed at the 95 per cent confidence 
level. The reason is apparent from Fig. 2. Earthquakes since 
1995 have been much more strongly clustered than before, 
because of the large number of aftershocks of the strong Kurile 
Island earthquakes. Even though these aftershocks occurred 
in an area already red or dangerous in Fig. 2 because of 
pre-1995 earthquakes, the model with R,,, = 350 km fails to 

account for their strong clustering. As Kagan & Jackson 
(1994a, p. 13 961) explained, the forecast of aftershocks requires 
the selection of smaller R,,,. There are two lessons to be 
learned here. First, like any forecast model, the model of 
Kagan & Jackson (1994a) needs a quantitative procedure 
to account for aftershocks. Second, a visual inspection of a 
colour map like that of Fig. 2 is not adequate: a quantitative 
hypothesis test is required. 

Two destructive earthquakes occurred in areas which are 
not shown to be especially dangerous on the map (Fig. 2): the 
Sakhalin event of 1995 May 27 (moment magnitude m, = 7.1) 
and the Kobe earthquake of 1995 January 16 (m, = 6.9). The 
lack or paucity of seismicity in the Harvard catalogue in the 
neighbourhood of both shocks contributed to the low value 
of the hazard in Fig. 2. These two earthquakes demonstrate 
two issues related to evaluating earthquake probabilities 
in regions of low seismicity: (1) a need for new smoothing 
techniques which would allow the extrapolation of seismicity 
values from active regions over large distances to areas of low 
activity; (2)  the evaluation of the maximum magnitude. 

Kagan and Jackson (1994a) assumed that earthquake size 
distribution is the same in all regions. To test this hypothesis, 
Kagan (1997a) investigated the seismic-moment distribution 
for the Flinn-Engdahl regionalization of the global seismicity 
using the Harvard data. The maximum moment M,, (see eq. 9 
below) can be statistically evaluated only for subduction zones 
treated as a whole, M,, = 10” to 2 x N m, which corre- 
sponds to a worldwide M,,-value (Kagan 1994; Kagan 1997a). 
The maximum moment magnitude is 8.0-9.0. For other regions, 
as well as for single subduction zones, M,, is determined by 
comparing the number of events in each zone with the seismic 
moment rate calculated on the basis of the NUVEL-1 model of 
plate motion (DeMets et al. 1990). For subduction zones 
Kagan (1997a) obtained an estimate of M,, which agrees with 
the statistical value, providing evidence that most tectonic 
deformation is released by earthquakes. Kagan ( 1997a) tested 
the hypothesis that no statistically significant variations in the 
b-value and M,, occur in subduction and continental collision 
zones; the hypothesis cannot be rejected with the available data. 
These results signify that if we know the deformation rate in 
continental areas, we can predict the seismic hazard by calcu- 
lating the seismic-activity rate, since the moment-frequency 
relation is universal. 

4 E A R T H Q U A K E  S C A L E  I N V A R I A N C E  

4.1 Earthquakes as a non-linear dynamic process 

Earthquake occurrence distributions exhibit scale-invariant 
properties: the frequency of an .aftershock occurrence decays 
in time as a power law, and earthquake size distribution is 
also a power law (Kagan 1994; Vere-Jones 1995; Kagan & 
Vere-Jones 1996; Main 1996). It has recently been determined 
that other statistical features of earthquakes, such as the spatial 
distribution and the rotation of focal mechanisms, are also 
self-similar (Kagan 1994). 

4.1.1 Earthquake size distribution 

According to the G-R law (eq. 1) the number of earthquakes 
increases as their sizes decrease. The G-R relation can be 
transformed into a power-law (Pareto) distribution for the 
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110 Longitude (E) 170 

-4 -2 0 
Log,, probability of earthquake occurrence, M, > 5.8, eq/year*( 1 00km)2 

Figure 2. Northwest Pacific seismicity forecast: colour tones show the probability of earthquake occurrence calculated using the Harvard 
1977-1994 catalogue: latitude limits 0-60.O"N, longitude limits 110.0-170.O"E. Earthquakes in 1993-1994 are shown in black; earthquakes in 
1995-1996 (119 events up to 1996 December 31) are shown in white. 
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Log Likelihood Ratio (sigma) 

Figure 3. Distribution of scores. Dashed line: simulations with 
R,,, = 350 km; dash-dotted line: simulations with R,,, = 250 km; 
dotted line: simulations with R,,, = 175 km; solid line: best Gaussian 
curve with the same standard deviation as the simulations. Prediction 
based on seismicity from 1977 to 1994. 

scalar seismic moment with the probability density 

& M )  cc M-'-O, % b/1.5. (8)  

Simple considerations of the finiteness of the seismic moment 
or deformational energy available to generate earthquakes 
require that the power-law relation be modified at the maxi- 
mum size end of the moment scale (Kagan 1994). At a 
maximum, the probability density tail must have a decay 
stronger than M-l-p, with p >  1. Usually this problem is 
solved by introducing an additional parameter, a 'maximum 
moment' ( M x E ) ,  to the distribution: 

d ( M )  cc M-'  -6 exP (- M/M,,) 9 (9) 

which is called the modified gamma distribution (Kagan 1994; 
Main 1996). 

To illustrate the gamma-distribution fit to the actual data, 
Fig. 4 displays a cumulative histogram for the scalar seismic 
moment of the events in the Harvard catalogue (Dziewonski 
et a/. 1996) for shallow, intermediate and deep earthquakes. 
To ensure data uniformity in time and space, we use events with 
M 2 1017.7 N m, which correspond to m, 2 5.8. Investigations 
of catalogues of smaller earthquakes show that earthquake 
self-similarity extends to magnitudes as small as zero (that 
is to a seismic moment of 109Nm), and maybe smaller 
(Abercrombie & Brune 1994). It is likely that, if we disregard 
source extents of less than a few millimetres (the dimension of 
microcrystals), there should be practically no lower limit to 
earthquake size. All the curves in Fig. 4 display a scale- 
invariant segment (linear in the log-log plot) for small and 
intermediate values of the seismic moment. At large M ,  the 
curves are bent downwards: the lack of very strong earthquakes 
is the result of the above-mentioned finiteness of the seismic- 
moment flux. Earthquake-size self-similarity breaks down at  a 
source-size scale of about 500-700 km (Kagan 1997a). Scale 
invariance of earthquake size for all but the largest earthquakes 
suggests that the Earth is in a state of self-organized criticality 
(Bak 1996), where any earthquake has some probability of 
cascading into a larger one. 

-. 
(71-300 krn) 

Deep (301 -700 km) 

i 

Gamma distribution . Gamma distribution 
iL i 

lo-' '  ' ' "..d ' ' " " " '  ' ' " , , - '  ' ' " . " '  ' ' " . . , , '  
10" 1 o'8 10" 1 OZQ 1 02' 1 OZ 

Seismic Moment (Newton m) 

Figure 4. Seismic moment versus cumulative frequency for the 1977 
January 1-1996 June 30 Harvard catalogue. The curves show the 
numbers of events with moment larger than or equal to M .  We also 
show the approximation of curves by the modified gamma distribution, 
which is the G-R law restricted at large magnitudes by an exponential 
taper. The slopes of the linear parts of the curves correspond to the 
p-values (eq. 9)  0.657 +_ 0.017, 0.573 k 0.046, 0.580 k 0.035, and the 
maximum moment M A ,  = 3.5 x lo2', 4.0 x lozo, 2.2 x lo2' N m for 
shallow, intermediate and deep earthquakes, respectively. The 95 per 
cent confidence limits for the maximum magnitude are similarly 8.1-8.7 
(8.37), 7.5-8.3 (7.73) and 7.7-co (8.23), where the values in parentheses 
are used in the graph. An extrapolation of the curves to small values 
of seismic moment shows that the total number of small earthquakes 
is extremely large 

4.1.2 Earthquake-process self-similarity in different magnitude 
ranges 

Several classes of stochastic multidimensional models have 
been applied to  the statistical analysis of earthquake catalogues 
using likelihood methods (Kagan 1991; Ogata 1998). The 
results of these studies suggest that most distributions con- 
trolling earthquake interaction have a fractal or scale-invariant 
form (Mandelbrot 1983). The parameters of earthquake 
occurrence are shown to be similar for shallow earthquakes 
of different magnitude ranges and seismogenic regions, con- 
firming self-similarity for the earthquake process. Since micro- 
earthquakes in rock specimens and in mines seem to follow 
similar distributions, the self-similarity extends over many 
orders of magnitude (Kagan 1994). 

4.1.3 Temporal fractal pattern 

Statistical studies of earthquake occurrence (Kagan 1991; 
Ogata 1998) and the results of computer simulations (Kagan 
& Vere-Jones 1996) suggest that the temporal behaviour of 
earthquake sequences is governed by power laws. For more 
than 100 years (Utsu, Ogata & Matsu'ura 1995), it has been 
known that for shallow earthquakes the rate of aftershock 
occurrence (Omori's law) has a power-law decay: 

fj( t )  cc t - -@, (10) 

where Q = O  to 0.5. Foreshocks are also shown to obey a 
similar power-law increase before a main shock (Kagan 1991). 
Kagan (1982, 1994) suggested that this dependence is due to 
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stress diffusion: if we assume that stresses at the end of an 
earthquake rupture are below the critical value and thereafter 
change randomly according to 1-D Brownian motion, then 
the level-set of this motion is a fractal set with a dimension 
0.5 (Mandelbrot 1983). When the random stress reaches the 
critical level, a new rupture starts. Therefore, the time intervals 
between the end of fracture and the beginning of a new 
earthquake are distributed according to a power law. Thus, 
the short-term clustering of earthquakes is due to stress 
diffusion. 

4.1.4 

Using several earthquake catalogues, we analyse the distri- 
bution of distances between pairs of earthquake hypocentres 
to determine the spatial fractal correlation dimension (6) of an 
earthquake fracture (Kagan 1994 and references therein). As 
the time span of the catalogue increases, the correlation 
dimension 6 asymptotically reaches a value 2.1-2.2 for shallow 
earthquakes. The spatial scale invariance breaks down for 
distances between hypocentres of 2000-3000 km; this distance 
corresponds to the average size of continents or the total 
thickness of the mantle. 

Fractal pattern of earthquake hypocentres 

4.1.5 Cauchy distribution of focal-mechanism rotations 

Kagan ( 1982) introduced the rotational Cauchy distribution 
to represent the rotations of the focal mechanisms of micro- 
dislocations which comprise the earthquake focal zone. The 
Cauchy distribution is especially important for earthquake 
geometry, since theoretical arguments and simulations show 
that a stress tensor in a medium with defects follows this 
distribution (Kagan 1994). The 3-D rotation of earthquake 
focal mechanisms can also be approximated by the Cauchy 
distribution (Kagan 1994). The Cauchy law is a stable distri- 
bution with a power-law tail (it is fractal and should yield 
fractal fault geometrical patterns). 

4.1.6 Random stress model 

O n  the basis of the results presented above, we offer a model 
of random defect interaction in a critical stress environment, 
which, without additional assumptions, seems to explain most 
of the available empirical results (Kagan 1994; Kagan & Vere- 
Jones 1996). In the time domain, Omori's law of foreshock/ 
aftershock occurrence and, in general, the time clustering of 
earthquake events, are a consequence of the Brownian-motion- 
like behaviour of random stresses due to defect dynamics. 
These results justify the short-term prediction proposed by 
Kagan & Knopoff (1987). 

Similarly, the presence, evolution and self-organized aggre- 
gation of defects in the rock medium are responsible for fractal 
spatial patterns of earthquake faults and rotation of earth- 
quake focal mechanisms. The Cauchy distribution governs the 
stresses caused by these defects, as well as the rotation of focal 
mechanisms (Kagan 1994). These considerations indicate that, 
if we know the geometry of the defects in a medium, future 
deformation patterns can be predicted. 

The results obtained force one to question the suitability of 
some concepts and models commonly used in the theory of 
earthquake sources. In particular, standard models of the 
source are based on the mechanics of man-made objects, thus 

they introduce such conccptj as 'an indi\idual cai-tliqiit!A i \ce 
Section 5 .  I ), 'a fault-plane' or 'a fault-surface'. ';I CI ~ c h - ;  ! ,' (),. 

'a fault-tip' and 'friction', which in a scale-in\atiant iiioclL,: fClck 
an unambiguous delinition (Kagan 1994). 

4.2 Earthquake modelling 

Efforts to develop mechanical or computer model5 0 :  lIle 
earthquake process (Ben-Menahem 1095; Knopolf I ,406: 
Knopoff et trl. 1996) have not yet achiewxl real prcdi i ' , \e  
power. The earthquake models used in  simulations ;ire L I \ L ,  1 1 )  
autonomous, isolated, closed systems. but in  nature tcctIt , l c  

earthquakes result from global mantle convection. Thu,. 
region can be considered isolated. 

It is difficult to judge computer simulations of ear-tliclu,ii L' 

occurrence: similar calculations of fluid dynamics can : V  

directly compared to the actual velocity field (Ruelle 1W 
Frisch 1995). Synthetic earthquake catalogues. ho\rc\ci 
need to be matched with real catalogues. Due to the higlii: 
random nature of seismicity, earthquake occurrence can I L  
discussed only in statistical terms. If synthetic sequences ;II. 

to be exploited in modelling seismicity, we must show thai  
they have the same statistical characteristics as real earthqtiah, 
sequences with respect to their distribution in sire. lime a n t i  

space; it is here that problems develop. 

(1)  Earthquake size distribution is not sufficiently specilic 
to distinguish between competing models of seismogenesij. 
The power-law seismic-moment distribution (which is equivalent 
to the G-R relation, see Section 4.1.1) seems to be an outcomc 
of many models with a hierarchical structure. The power I a ~ j  
may also be the result of critical self-organization (Bak 1996). 

(2) To a large degree, simulated spatial earthquake distri- 
bution is controlled by the fixed geometry of faults designated 
at the start of the computations. An actual geometrical fault 
pattern may be the result of self-organization in which stress 
redistribution plays a major role. Only a few mechanical models. 
such as that of Cowie, Sornette & Vanneste (1995) ,  simulate 
the evolving geometry and mechanical properties of a fault 
system, but this is done for a very simple mechanical model. 

(3) Such major features of earthquake occurrence as after- 
shock sequences are not reproduced by most models, casting 
doubt on the applicability of their results to real earthquakes 
(Kagan 1994). Since the simulations do not generate foreshocks 
and aftershocks, only the temporal interaction of main events 
can be investigated. Main-shock sequences can be fairly well 
approximated by a Poisson process, which shows that these 
earthquakes are statistically independent. There is little infor- 
mation in sequences of independent events; such time-series 
can be produced by a great variety of mechanisms. One should 
expect that, on closer inspection, main shock occurrence 
will turn out to be non-Poissonian. However, i t  is debatable 
whether large earthquakes in  nature are clustered or quasi- 
periodic (Kagan 1994). On the other hand, the temporal pattern 
of foreshock/main-shock/aftershock sequences is reasonably 
well known. Thus, if a computer model could generate such 
sequences, one could compare them with observational results. 

4.3 
prediction 

Recurrence models and long-term earthquake 

4.3.1 Scalar models 

The recurrence hypothesis implies that earthquake hazard is 
small immediately following a previous large earthquake and 
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increases with time. The usual explanation is that a large 
earthquake releases most of the stress in  a given fault segment 
and that further earthquakes would be unlikely until the 
stress is restored by plate motion. These simple ideas form a 
basis for most long-term earthquake prediction efforts (see 
Section 3.3.3). On the other hand, earthquake catalogues testify 
to the fact there there is no quiescence after a strong earth- 
quake-on the contrary, the earthquake rate decays according 
to Omori's law. The aftershocks of the Nobi 1891 earthquake, 
described by Omori (1894), still obey the eponymous law more 
than 100 years after the beginning of the sequence (Utsu 
et a/. 1995). 

The earthquake-clustering hypothesis has been offered to 
explain the spatial and temporal clustering of events (Kagan 
1994). This hypothesis, which is the opposite of the recurrence 
model, seems to contradict the steady accumulation of strain 
due to plate motion, and is thus considered counter-intuitive 
and even paradoxical. However, if the earthquake size- 
frequency relation is described by the G-R or  by the modified 
gamma distribution, the strongest earthquakes release the 
major part of the tectonic deformation (Kagan 1996a). The 
arguments on strain accumulation and release are thus 
applicable only to these large earthquakes. 

To illustrate this, we display the probability density for the 
total moment rate released by earthquakes in Fig. 5(a). The 
density is displayed for three statistical distributions commonly 
used to approximate earthquake size (Kagan 1996a). All these 
distributions reproduce the G-R law for small and intermediate 
events. For large earthquakes, the distribution densities have 
either a delta function at the maximum moment, a density 
truncation or  exponentially smooth decay-the gamma distri- 
bution. In the figure we have adjusted the maximum moment, 
M,,,, so that the moment rate is identical for all three 
distributions: M,,, = loz1, 3.38 x 10'' and 4.74 x loz1 N m, 
respectively (see Fig. 4). These values of the moment corre- 
spond approximately to magnitude values M,,, = 8.0, 8.35 
and 8.45. For the truncated distributions, the maximum 
moment rate release is at the moment of the maximum 
earthquake. However, for the gamma distribution, the maxi- 
mum release is at M,,,/3 (corresponding to magnitude 8.13 
in the graph). About 65 per cent of the total moment is due 
to earthquakes smaller than M,,,/3; the rest (35 per cent) is 
released by larger events. The cumulative distributions shown 
in Fig. 5(b) demonstrate that earthquakes with m > 7.3 
(10" N m) account for about 70 per cent of the total seismic 
moment. 

Although tectonic stress accumulates steadily, it may not be 
released on the same fault in a quasi-periodic fashion: very 
large displacements can be stored and then released in a few 
giant earthquakes. These giant earthquakes are so rare (Kagan 
1997a) that the effect of significant stress release by these events 
may have very little predictive value. Moreover, the stress in 
the seismogenic zones may always be close to a critical state, 
even after very strong earthquakes, allowing new large events 
to occur very soon thereafter. Earthquakes that occur near 
newly filled dams testify to the near-criticality of stress even in 
stable continental areas (Scholz 1991). Additionally, a system 
of faults can accommodate large-scale deformation by releasing 
it in clusters of large earthquakes occurring on different, 
possibly closely related faults, by rotation of microblocks, and 
by a host of other mechanisms. 
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Figure 5.  Probability function for distribution of seismic-moment 
rate. Solid line: truncated G-R cumulative distribution; dash-dotted 
line: truncated G-R distribution density; dashed line: modified gamma 
distribution. All distributions have a b-value for small earthquakes 
equal to 1. The maximum moment parameter is adjusted so that the 
total moment is the same for all three distributions. (a) Distribution 
density; (b) cumulative distribution. 

The discussion above assumes that stress and strain can 
be approximated as scalar quantities. Tectonic deformation is 
effected through a fault system which forms very complicated 
3-D geometrical patterns. Thus, scalar representation is clearly 
insufficient. 

4.3.2 
and problems 

The advent of high-speed computers and mass determination 
of seismic moment tensor parameters allows us to calculate 
the stress tensor and its relation to earthquake triggering. 
Several recent publications (King, Stein & Lin 1994; Harris 
& Simpson 1996; JaumC & Sykes 1996, and references 
therein) explore the inter-relation of stress and earthquakes. 
Many interesting results have been obtained thus far, but 
their interpretation in the framework of stress accumulation 

Stress tensor and earthquakes: fundamental assumptions 
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and release using the recurrence models encounters serious 
difficulties. 

If a large earthquake occurs when the stress exceeds the 
strength of rocks, why do small earthquakes occur over the 
seismogenic zone all the time? If the stress value is close to the 
critical level over a large area, should strong earthquakes occur 
more frequently than usual, leading to a smaller b-value in the 
region-this feature has not been observed unambiguously- 
or does the increased stress level simply trigger more earth- 
quakes without regard to size? The magnitude-frequency 
relation for aftershocks does not seem to vary from that for 
all earthquakes. If there is a stress shadow after a large 
earthquake in the focal zone and nearby, how can one explain 
the occurence of aftershocks? There is no clear spatial, temporal 
or magnitude boundary between the aftershocks and other 
earthquakes. If the increased stress triggers earthquakes and a 
large earthquake releases stress, why are there more aftershocks 
than foreshocks? The models of stress triggering earthquakes 
assume that the Coulomb fracture criterion is vahd for the 
Earth’s interior, as has been established in laboratory testing 
of rock specimens. However, numerous attempts to evaluate 
the friction coefficient in situ have been inconclusive, often 
suggesting that the coefficient is close to zero (Kagan 1994). 
The tensor stress field in a fault zone is a complex, self- 
similar, 3-D mosaic, thus determining where an earthquake 
starts and stops becomes a formidable problem (Kagan 
1994). These facts challenge the conventional paradigm for 
earthquake generation. 

It is possible that ideas about stress accumulation and its 
release in earthquakes will be useful for long-term forecasts of 
earthquake occurrence. As we have seen above, previous 
attempts to apply these models have not been successful. The 
fundamental problem in their implementation has been that 
basic and essential procedures of scientific research were 
neglected: in almost all cases the prediction scenarios were not 
stated as testable, falsifiable hypotheses. 

5 DISCUSSION:  E A R T H Q U A K E  
PREDICTABILITY 

5.1 Specific-earthquake prediction 

Is it possible to predict a specific earthquake, even in principle? 
The concept of precursors for an isolated specific earthquake 
seems to be based on an intuition that preparing for a large 
earthquake is similar to the life of a biological organism: its 
stages of life can be observed by appropriate techniques and 
approprite precursors can be identified. The ‘characteristic 
earthquake’ model demonstrates these ideas (for instance, one 
discusses the next Parkfield earthquake). Aki (1995, p. 244) 
said that ‘Once a characteristic earthquake is identified for a 
given fault segment, it becomes an individual, like a human 
being, for which life expectancy at  a certain age can be 
evaluated and used for determining the premium for life 
insurance.’ Contrary to that, in continuum physical systems 
there are no individuals. We can, for example, subdivide a 
mountain range into separate mountains, but this is a purely 
human way of naming things. There is no physical meaning 
behind it, and no computer algorithm can be created to make 
such a subdivision unambiguously. As we mentioned in 
Section 4.1.6, the definition of an individual earthquake or an 

individual fault is questionable in view of the scale-invariant 
nature of the earthquake process. It is the process of measure- 
ment and its interpretation which isolates the clusters of 
elementary rupture events and gives them a separate identity 
as individual earthquakes (Kagan & Vere-Jones 1996). 

Most geophysicists would agree that our present knowledge 
of the geology and tectonics of seismogenic regions is clearly 
insufficient to predict a specific individual earthquake, since 
the possibility of an earthquake similar to the predicted one 
must be ruled out. If earthquake size, space and magnitude 
form a continuous distribution, a specific event cannot reliably 
be identified. Moreover, the scale invariance of an earthquake 
process signifies a highly sensitive non-linear dependence of its 
evolution on the initial conditions. Exactly when and where 
earthquakes occur and how large they grow after they start 
depend on a myriad of fine and unmeasureable details of the 
physical state of the Earth throughout a large volume, not just 
near the fault. 

The new developments in the non-linear mechanics of earth- 
quake generation, scale invariance and self-organization of the 
earthquake process, and statistical analysis of earthquake 
sequences (Kagan 1994) strongly suggest that the earthquake 
process IS unstable: the size of each earthquake is determined 
only during the process of rupture (Brune 1979). Many small 
earthquakes occur throughout any seismic zone, demonstrating 
that the critical conditions for earthquake nucleation are 
satisfied almost everywhere. Apparently, any small shock could 
grow into a large event. This would mean that no long-term 
earthquake precursors are possible that can yield precise 
information on the size of a future event (that is classes 1-3 
in Table 1). The reliable prediction of a specific strong earth- 
quake can be reached only at the timescale when inertial effects 
are strong, that is a t  the timescales of seconds and at  most 
tens of seconds for great earthquakes (see Section 5.3 and 5.4). 

Sornette & Sammis (1995), Varnes & Bufe (1996) and 
Johansen et al. (1996) found log-periodic fluctuations of 
seismicity and ion concentrations in groundwater before a few 
earthquakes. According to these authors, these log-periodic 
modulations are second-order effects superimposed over a 
hyperbolic long-term increase of seismicity before a main 
shock. They propose that both of these effects result from the 
fact that a large earthquake is a critical phenomenon, in the 
sense of statistical physics. The long-term earthquake clustering 
with a power-law temporal dependence is a characteristic 
feature of seismicity (Kagan 1994 and references therein). 
The log-periodicity would allow a more exact prediction of 
time for a main shock occurrence and would forecast its 
magnitude approximately. However, the existence of the log- 
periodic scale needs to be confirmed by rigorous testing. These 
log-periodic patterns have been observed only for a few earth- 
quake sequences. Johansen et al. (1996, p. 1401) remarked 
that ‘... there are presumably other sorts of fits with as many 
parameters that would work as well’. As we discussed above, 
the data available for examination comprise many hundreds 
and thousands of sequences. Thus, one needs to show that 
the properties of the sequences that have been analysed are 
representative of earthquake occurrence as a whole, in other 
words the selection of the sequences has been unbiased. Gross 
& Rundle ( 1995) investigated the log-periodic patterns of 
seismicity in a more systematic manner, and their preliminary 
results are negative. We note that some precursory patterns 
that showed interesting and promising results in preliminary 
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ex post fiicto tests were disappointing when tested i n  the 
forward mode (Section 3.3.4). 

However, is it possible to predict a specific earthquake in a 
laboratory or in computer simulations? In a laboratory and 
simulations, a crack develops instabilities which make its 
propagation highly chaotic and unpredictable (Abraham 1996; 
Marder 1996; Marder & Fineberg 1996; Abraham et ul. 1997). 
These instabilities are due to crack propagation, especially a t  
a speed close to the elastic-wave velocity. Stress and fracture 
conditions in laboratory specimens differ significantly from 
those in earthquake fault zones: the boundary effects are 
controlled by an experimenter in the lab. Therefore, fracture 
can self-organize only at spatial scales much smaller than 
that of the specimen. In fault zones, stress, rock mechanical 
properties and fault geometry are self-organized with the 
development of large-scale self-similar patterns. 

Researchers working in the computer modelling of earth- 
quake occurrence are aware of the chaotic development of 
synthetic seismicity (Knopoff et ul. 1996). A more important 
point here is whether one can predict-in theory or by 
computer models-when an earthquake rupture propagation 
will stop and whether it is possible to predict possible branching 
earthquake faults and 3-D rotations of earthquake focal mech- 
anisms. Thus, earthquake size depends on the conditions in 
widely separated regions of the seismogenic zone, and on our 
definition of the end of faulting. If we are not able to predict 
this deterministically, then predictions 1 and 2 (Table 1) cannot 
be achieved, even in ideal circumstances. 

Currently, the exact conditions and constitutive equations 
for earthquake rupture are unknown. Because of this and 
significant computational difficulties, most simulations are 
carried out in a quasi-static regime. However, even if these 
equations were known, there are still fundamental difficulties 
in predicting when rupture stops. Even if we knew the position 
of all of the atoms in our model, quantum-mechanical effects 
would prevent full knowledge of fault-rupture propagation. 
Kagan ( 1982) proposed modelling fault propagation during 
an earthquake as a continuous-state, critical, branching 
random process. A new fault system can branch starting from 
any continuum point and develop into a large earthquake. 
Classical continuum mechanics is the foundation of earth- 
quake models, but the continuum real numbers are not com- 
putable (see e.g. Svozil 1995; Casti & Karlqvist 1996), making 
deterministic computer modelling impossible. 

Due to defects, the theoretical strength of materials is two 
to three orders of magnitude higher than the real strength 
(Marder & Fineberg 1996). In natural systems, the largest 
defects (earthquake faults, for example) are comparable in 
size with the size of the system. The geometry of defects is 
scale invariant and fractal, and the defects form Cantor-set- 
type temporal and spatial patterns (Kagan 1994; Kagan 
& Vere-Jones 1996). Geometry and other branches of math- 
ematics have undergone a fundamental change since Cantor’s 
discoveries at the end of the 19th century (Mandelbrot 1983; 
Vilenkin 1995). The present continuum mechanics is still 
pre-Cantorian in outlook. 

5.2 Precursors 

To date, the empirical search for earthquake precursors that 
yield information on the size of an impending earthquake (that 
is classes 1-3 in Table 1) has been futile. Precursors can be 

subdivided into two categories: strong and weak Strong 
precursors are phenomena which yield a predictive ratio either 
t? 2 10 or y~ < 0.1, thus they predict either very high seismic 
activity, or low activity (quiescence). Weak precursors, in our 
definition, have y~ # 1, but 0.1 I y~ 5 10. The strong precursors 
would undoubtedly be seen even without a sophisticated 
statistical analysis. The efforts of the last 100 years to find 
these strong precursors have failed. In all probability, they do 
not exist (cf Turcotte 1991). 

An opinion often expressed (see e.g. Lomnitz 1994; Ben- 
Menahem 1995) is that by combining information from several 
unspecified, weak precursors, one can reliably predict earth- 
quakes. Many publications claim to see precursors to earth- 
quakes (Mogi 1995; Lomnitz 1994 and references therein). 
Space considerations d o  not allow us to discuss most of these 
in detail. Almost all the precursors have been found after an 
earthquake, i.e. retrospectively (Geller 1997; Mulargia 1997; 
Geller et al. 1997), and almost all the reports are case histories, 
without any attempt to confirm the precursor’s validity 
statistically. There are usually no objective definitions of 
‘precursory anomalies’, no consistency in appearance of the 
reported precursors, no quantitative physical mechanism links 
the alleged precursors to earthquakes, and natural or artificial 
causes unrelated to the earthquakes have not been compellingly 
excluded. One often observes an inverse correlation between 
the quality of the data and the number of ‘surprising’ precursor 
results based on these data. 

Several statistical tests have been carried out in the forward 
mode (Sections 3.3.3 and 3.3.4), the most rigorous examination 
of a prediction method’s validity (Engelhardt & Zimmermann 
1988, p. 230). The techniques that have been tested are the 
results of long-term prediction efforts by highly qualified 
scientists-they perhaps represent the ‘cream of the crop’ in 
precursor analysis. The results of the tests have shown that 
even the best prediction methods have possibly no predictive 
skill. The null hypothesis could not be rejected as an expla- 
nation of the test results. 

Is it possible that some statistical indications of future 
earthquake size exist, that is can we predict that the distribution 
of future earthquake size would differ from the G-R relation 
for a certain time-space interval? In other words, is the 
‘magnitude-specific’ prediction (Item 3 in Table 1) possible? It 
is difficult to answer this question conclusively. Many schemes 
claim to predict the size of future earthquakes, and some 
statistical tests seem to indicate that a proposed method indeed 
has a predictive power. For example, Molchan & Rotwain 
(1985) and Molchan et al. (1990) tested ‘bursts of aftershocks’ 
as a predictor of strong earthquakes. The ‘bursts of aftershocks’ 
are used as one of the patterns in the M 8  algorithm 
(Section 3.3.4). Whereas the first attempt was unsuccessful, the 
accumulation of earthquake data later allowed Molchan et al. 
( 1990) to confirm, albeit marginally, the statistical significance 
of this premonitory pattern. The question arises whether the 
predictive power of this method is due to long-term earthquake 
clustering or to some other features of seismicity. Similar 
problems arise in analysing other prediction claims. As dis- 
cussed earlier (Sections 3.2.1, 3.3.5 and 4.1), clustering has a 
very strong predictive power: the future occurrence rate may 
increase by several orders of magnitude after a strong earth- 
quake. Unfortunately, all attempts to derive additional infor- 
mation on the size distribution of future events have been 
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fruitless; the distribution cannot be shown to differ from the 
standard G-R law in a statistically significant manner. 

If the size distribution depends on details of stress patterns, 
then one would expect that the b-value in eq. (1) would change 
significantly in the wake of a very strong earthquake which 
releases and redistributes stress over large regions. However, 
despite many attempts to find the b-value variation before and 
after a large event, no such pattern has been unambiguously 
found. 

The general scientific methodology is to assume that the 
null hypothesis (no precursors) is correct, until convincing 
evidence to the contrary is provided. In any case, the burden 
of proof is on the proponents of precursors. We thus conjecture 
that there are no precursors which forecast the size of a future 
earthquake (class 3 in Table 1) and there is no preparatory 
stage for an earthquake. 

5.3 Real-time warning systems 

Several near-real-time earthquake warning systems are now in 
operation in a few countries (Lomnitz 1994; Malone 1996). By 
providing timely information on source parameters (location, 
depth, origin time, magnitude, focal mechanism, etc.) to govern- 
ment officials and the public, these systems can facilitate relief 
efforts after large earthquakes. The NRC Panel (1991) dis- 
cussed a system of almost-real-time warning and automatic 
response which is in effect a real-time prediction. 

Modern technology makes it possible to obtain earthquake 
parameters during the actual faulting process (see e.g. Scrivner 
& Helmberger 1995). The results of such real-time inversion 
could be used to calculate the strong motion (Olsen, Archuleta 
& Matarese 1995) of an earthquake during the process of 
rupture and provide this information to potential users in real- 
time. If seismometers are situated close to a rupturing fault 
and the computation is almost simultaneous with the arrival 
of seismic waves, a warning can be issued for facilities far 
enough from the fault, with a lead time from a few seconds up 
to  1-2 minutes (NRC Panel 1991, p. 27). During this time (the 
propagation of destructive shear and surface waves), the extent 
of the faulting which has occurred can, in principle, be deter- 
mined. Thus, the forecast has the properties of a deterministic 
prediction (Item 1 in Table 1) or of the ‘ideal prediction’ in 
Table 3. However, we cannot predict whether an earthquake 
rupture would stop propagating at  the time of its registration, 
thus the prediction will be less accurate after the interval 
corresponding to the wave-propagation time. The results of a 
real-time or near-real-time seismic system can be used by 
short-term algorithms (Section 3.3.5) to evaluate earthquake 
probabilities (Kagan & Knopoff 1987; Molchan & Kagan 
1992) at longer time intervals (minutes to weeks). 

5.4 Earthquake and weather prediction 

The highly heterogeneous state of the Earth, the absence 
of a quantitative theory for earthquake generation and the 
inaccessibility of fault zones to  direct measurements impose 
serious difficulties on earthquake predictability. However, we 
argue that the fundamental reason for the difficulties lies 
elsewhere. In the turbulent motion of fluids, the fluid properties 
and basic laws governing displacement (the Navier-Stokes 
equations) are known (Ruelle 1991; Frisch 1995). However, 
the reliable prediction of air motion in a room can be calculated 

only for a few minutes and Earth atmosphere circulation ciln 

be predicted for a few days, when inertial effects are strong. 
The sensitive dependence on initial conditions signifies that 
longer-term weather prediction is impossible (Ruelle 1991; Frisch 
1995). For earthquakes, the inertial effects are strong only 
during earthquake rupture and the subsequent seismic-wave 
propagation, that is on the timescale of seconds. 

There is another difference between weather and earthquake 
prediction. The earthquake process is strongly asymmetric in 
time: there are fewer foreshocks, if any, than aftershocks in a11 
earthquake sequence. The time asymmetry of seismicity, which 
is so different from the turbulent flow of fluids, explains why 
earthquake prediction, unlike weather forecasting, is unreliable 
even at very small lead times. In more than 50 per cent of 
earthquake sequences (Section 3.3.5), the first event is the 
largest (a main shock). Whereas earthquake initiation is usually 
sharp and abrupt, its stopping phase consists of many rupture 
events, which are either classified as a late phase of faulting or 
as immediate aftershocks. While the most violent manifestation 
of atmosphere turbulence-a tornado-can be predicted with 
a lead time on the order of half an hour with few errors 
(Desrochers & Donaldson 1992, p. 382), a catastrophic earth- 
quake may occur practically without warning. However, the 
prediction of a tornado’s path, as well as that of a tropical 
hurricane, faces serious difficulties, since small variations of 
initial conditions may drastically change its trajectory. 

5.5 Are earthquakes predictable? 

It is much more difficult to establish that a solution for a 
certain scientific problem is impossible than the opposite. Such 
findings are common in mathematics. In other sciences, long, 
unsuccessful attempts to resolve problems such as ‘perpetuum 
mobile’ in physics or the transformation of elements in chemistry 
have led scientists to believe that these problems are insolvable, 
even before the laws that prove the impossibility of the solution 
have been formulated. The history of unsuccessful attempts 
over the last 100 years to find a method for predicting 
future earthquake size suggests that this problem may also be 
insolvable. Of course, it cannot be proven at present; therefore, 
our conclusions can only be provisional. 

Is prediction as popularly defined (Items 1-3 in Table 1) 
inherently impossible or just extremely difficult? Scientifically, 
the question can be addressed using a Bayesian approach 
(Anderson 1992; Geller et al. 1997). Each failed prediction 
attempt lowers the a priori probability for the next attempt. 
Based on the record to date, the current probability of success- 
ful prediction is extremely low. The obvious ideas have been 
tried and rejected during the last 100 years of modern earth- 
quake seismology. The task of systematically observing subtle 
precursory phenomena (if they exist), formulating hypotheses 
and testing them rigorously against future earthquakes would 
require an immense effort over several decades. A rigorous 
proof of reliable forecasting of future earthquake size would 
qualify as a major breakthrough. 

From a theoretical point of view, earthquake prediction and, 
in general, the understanding of the large-scale deformation of 
brittle solids, are extremely difficult scientific problems, perhaps 
even more difficult than the study of turbulence-the major 
unsolved problem of science. The solution may require the 
development of completely new mathematical and theoretical 
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tools. We should not expect significant progress in this direction 
i1i the near future. 

This sceptical view of current earthquake prediction efforts 
should not be interpreted as a statement that attempts to 
mitigate the destructive effects of earthquakes are futile. 
Evaluating seismic hazard as well as time-dependent earth- 
quake rates (Items 4 and 5 in Table 1 )  should significantly 
increase our ability to predict future earthquakes and adopt 
appropriate strategies for earthquake counter-measures. 
Real-time seismology can facilitate relief efforts after large 
earthquakes and eventually provide an immediate warning. 

6 CONCLUSIONS 

(1) An empirical search for earthquake precursors which 
forecast the size of an impending earthquake has been fruitless. 
Rigorous statistical attempts to verify proposed precursors 
have either been negative or inconclusive. The lack of con- 
sistency and systematics in the reported cases of precursors 
suggests that the precursors are caused by random noise or 
result from chance coincidence. 

(2) Recent developments in the non-linear dynamics of 
earthquake generation make it questionable that any pre- 
cursors exist. The long history of unsuccessful attempts to find 
precursors and the lack of rigorous statistical confirmation of 
their existence suggest that no preparatory stage exists for an 
earthquake. This would mean that any small earthquake could 
grow into a large event. 

(3) Although stress accumulation and release models may 
be the best vehicles for understanding earthquake processes, 
applying simple scalar models and simple geometries of earth- 
quake faults leads to contradictions and paradoxes, indicating 
that our present understanding is significantly deficient. 

(4) The seismic-moment conservation principle and new 
geodetic deformation data offer a new way to evaluate seismic 
hazard, not only for tectonic plate boundaries, but also for 
continental interiors. 

( 5 )  Earthquake clustering with power-law temporal decay 
can be used to estimate the future earthquake occurrence 
rate. Such schemes exist for short-time prediction and can 
be developed for longer-time forecasts. Quantitative multi- 
dimensional stochastic models of earthquake clustering need 
to be significantly improved, both for statistical testing of 
predictions and for short-term earthquake forecasts. 

(6) For very short time intervals, real-time seismology can 
provide relatively reliable information on source parameters 
during earthquake rupture and on shaking amplitude before 
destructive seismic waves arrive. 
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