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SUMMARY 
Time-domain electromagnetic (TDEM) migration is based on downward extrapolation 
of the observed field in reverse time. In fact, the migrated EM field is the solution of 
the boundary-value problem for the adjoint Maxwell’s equations. The important 
question is how this imaging technique can be related to the solution of the geoelectrical 
inverse problem. In this paper we introduce a new formulation of the inverse problem, 
based on the minimization of the residual-field energy flow through the surface or 
profile of observations. We demonstrate that TDEM migration can be interpreted as 
the first step in the solution of this specially formulated TDEM inverse problem. 
However, in many practical situations this first step produces a very efficient approxi- 
mation to the geoelectrical model, which makes electromagnetic migration so attractive 
for practical applications. We demonstrate the effectiveness of this approach in inverting 
synthetic and practical TDEM data. 
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1 INTRODUCTION 

Time-domain electromagnetic (EM) migration is based on 
downward extrapolation of the residual field in reverse time. 
The basic principles of EM migration have been formulated 
in Zhdanov (1988), Zhdanov, Matusevich & Frenkel (1988), 
Zhdanov & Keller (1994) and Zhdanov, Traynin & Booker 
(1996). EM migration has important features in common with 
seismic migration (Zhdanov et al. 1988; Claerbout 1985) but 
differs in that for geoelectric problems EM migration is carried 
out on the basis of Maxwell’s equations, while in the seismic 
case it is based on the wave equation. We have introduced 
time-domain EM migration as the solution of the boundary- 
value problem in the lower half-space for the adjoint Maxwell’s 
equations, in which the boundary values of the migration field 
on the earth’s surface are determined by the observed EM field. 

In the paper by Zhdanov, Traynin & Portniaguine (1995) a 
technique for transforming the EM migration fields and their 
different components into resistivity images of the vertical 
cross-section was developed. However, the question still 
remains open how this imaging technique can be related to 
the solution of the geoelectrical inverse problem. Meanwhile, 
Tarantola ( 1987) demonstrated that seismic-wave migration, 
which was the prototype for EM migration, can be treated 
exactly as the first iteration in some general wave-inversion 
scheme. In the paper by Wang et al. (1994) this analogy was 
extended to the case of the diffusive transient EM field. 

In this paper we formulate and prove an important new 
result: E M  migration, as the solution of the boundary-value 

problem for the adjoint Maxwell’s equation, can be clearly 
associated with the inverse-problem solution. We introduce the 
residual EM field as the difference between the simulated EM 
field for some given (background) geoelectrical model and 
the actual EM field. The EM energy flow of the residual field 
through the surface of observations can be treated as a 
functional of the anomalous conductivity distribution in the 
model. The analysis shows that the gradient of the residual- 
field energy-flow functional with respect to the perturbation 
of the model conductivity is equal to the vector cross- 
correlation function between the incident (background) field 
and the migrated residual field, calculated as the solution of the 
boundary-value problem for the adjoint Maxwell’s equation. 

This result clearly leads to a construction of the rigorous 
method of solving the inverse EM problem, based on iterative 
EM migration in the time domain, and a gradient (or conjugate 
gradient) search for the optimal geoelectrical model. However, 
the authors have found that in the framework of this method 
even the first iteration, based on the migration of the residual 
field, generates a reasonable geoelectrical image of the sub- 
surface structure. We call the anomalous conductivity, calcu- 
lated on the first iteration, the migration apparent conductivity. 
We obtain a simple integral relationship between the migration 
apparent conductivity and actual anomalous conductivity, 
similar to the relationship established in the time domain for 
the inversion method based on the back-propagated TEM 
field (M. Oristaglio, personal communication, 1996). It 
describes the space filtering of the actual conductivity with the 
Green’s-type function. We believe that this relationship will 
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help to improve the migration imaging conditions because 
it opens the way for straightforward transformation of the 
migration apparent conductivity into the real conductivity. 
We compare these new imaging conditions with the tradi- 
tional one, obtained for simplified geoelectrical models of the 
subsurface structures (Zhdanov et al. 1995). 

In summary, in this paper we demonstrate that EM 
migration imaging can also be considered as the initial step in 
the general EM inversion procedure, based on the minimization 
of the residual-field energy flow through the surface of obser- 
vations. This similarity facilitates a better understanding of 
the mathematical and physical background of EM migration 
and, at the same time, helps in developing new geoelectrical 
imaging tools. 

2 TIME-DOMAIN ELECTROMAGNETIC 
MIGRATION AS THE SOLUTION OF THE 
BOUNDARY-VALUE PROBLEM 

Let us formulate a general time-domain EM inverse problem. 
Consider a 3-D geoelectrical model consisting of a homo- 
geneous atmosphere and an inhomogeneous earth with the 
conductivity a(r) = ab(r) + aa(r), where ab(r) is some back- 
ground (normal) distribution of the conductivity, and a,(r) is 
the anomalous conductivity, which is not equal to zero only 
within some domain D. We will denote the surface of the earth 
by C. We will confine ourselves to the consideration of non- 
magnetic media and hence assume that p = pco = 47c x lo-' H m-l, 
where pLo is the free-space magnetic permeability. The EM field 
in this model is generated by an arbitrarily located source with 
the current density je. Receivers are located on the surface of 
the earth. We assume also that the EM field is varying in 
time relatively slowly, so that in the equations for this field 
the second derivative with respect to the time dZ/at2 can be 
discarded. In other words, we consider the so-called quasi- 
stationary model of the EM field (without displacement 
currents) (Zhdanov 1988). 

We can represent the total EM field observed in this model 
as the sum of the background (normal) field {Eb, Hb} generated 
by the given source in the model with the background con- 
ductivity distribution, and an anomalous field {E", Ha}, which 
is due to an inhomogeneity aa(r): 

E = E~ + E", H = H~ + H". 

The total EM field satisfies Maxwell's equations: 

v X H =(cb + a,)E +je, 

( 1 )  

aH 
V x E = - p - - ,  

at 

while the anomalous field satisfies the equations: 

v X Ha = ObE" + a,(Eb + E") , 

The general EM inverse problem can be formulated as 
follows. We are given the observed total EM field on the 
surface of the earth and the background (normal) distribution 
of the conductivity ab(r). The problem is to determine the 
anomalous conductivity ca(r). 

In this section we introduce first the migrated anomalous 
EM field and show how it can be calculated from the anomalous 

field. In the following sections we will demonstrate the con- 
nections between the migrated EM fields and the solution of 
the EM inverse problem. 

It is known (Zhdanov 1988) that the anomalous EM field in 
this model can be expressed as an integral over the anomalous 
domain D of the product of the corresponding Green's tensors 
and excessive currents a,( Eb + E"): 

Ea(r, t )  = [" [ [ [ G!",(r, tlr', t')*aa(r') 

and 

*[Eb(r', t ' )  + Ea(r', t ' ) ]  du'dt', ( 5 )  
where G!", and Gk are the electric and magnetic Green's tensors 
for the background conductivity ab(r), whose vector com- 
ponents relate the electric and magnetic fields excited at the 
point r by an electric dipole source of unit intensity located 
at the point r' of the domain D. The basic equations for 
Green's tensors and their properties are briefly summarized in 
Appendix A. 

A general definition of the EM migration field has been 
given in the Zhdanov (1988). According to this definition, the 
migration field is the solution of the boundary-value problem 
for the adjoint Maxwell's equations. For example, we can 
introduce the migration anomalous field Earn and Ham, as the 
field, determined in reverse time T = - t ,  whose tangential 
components are equal to the anomalous field in the reverse 
time at the surface of the earth, C: 

n x Ea"(r, z) = n x E"(r, -T), 

n x H""(r,z)=n x H"(r, -T), 

where n is the unit vector of the normal to C directed into the 
upper half-space and satisfying Maxwell's equations in reverse 
time within the earth with a background conductivity ab: 

V x Ham = abEam, 

( 6 )  
r E C ,  

(7) 

From (7)  we can obtain the separate equation for the migrated 
anomalous electric field: 

JE"" 
V x V x Earn= - - / , ~ C J ~ T  

Therefore, in reverse time T ,  the electric migrated field satisfies 
the ordinary vector diffusion equation. However, in direct time 
t = - z the migrated anomalous electric field satisfies the 
equations adjoint to (8): 

While the ordinary diffusion equation describes the develop- 
ment of the process of EM field propagation in an increasing 
time from the source to the receiver, eq. (9) reflects the same 
process in the reverse order, that is from the final distribution 
of the field at the receivers to its initial distribution at the 
sources. Eq. (9) can thus be called, following Wang et al. 
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(1994), the vector concentration equation. As a result, the EM 
migration field can be treated as the field converging into the 
sources of the anomalous field, which actually coincide with 
the geoelectrical inhomogeneities. 

The solution of the boundary value problem (6) and (7) for 
the concentration equation can be obtained on the basis of 
Green tensor formula (B3) (see Appendix B). We assume that 
the volume D is bounded by the surface S, which is composed 
of the surface of the earth C and an infinitely large hemisphere 
in the lower half-space. Since the electromagnetic field satisfies 
the radiation conditions, that is the functions Earn and Ham 
vanish exponentially at infinity, the surface integral over the 
infinitely large hemisphere tends to zero. If we substitute, in 
formula (B3) from Appendix B, the field F with the migrated 
field Eam(r, t),  and the tensor k with the adjoint Green's tensor 
d!;+(r, Tlr', T'), determined in Appendix A, we obtain the 
following: 

[ { j D  { [V x V x Eam(r, z)] * &+ (r, tlr', 7') 

-Eam(r, z).[V x V x &+(r, zlr', z')]} do 

= n.{Eam(r, z) x [V x @+(r, zlr', t ' )]  

+[VxEam(r,t)] x @'(r,zIr',z')} ds. (10) 

Integrating the left-hand and right-hand sides of expression 
(10) over time 7 and taking into account eqs (8) and (A5), 
after some algebraic calculations we obtain 

Eam(r', T') = 1-z {L n*{Eam(r, t )  x [G;bH'(r, Tlr', z')] 

- Ham@, t )  x &:+ (r, zlr', 7')) dsdz. ( 1 1 )  
Returning from the reverse time, t ,  to the ordinary time, t = 
-7, and taking into account the reciprocal relations (A3) and 
(A4) from Appendix A and boundary conditions (6) for the 
migration field, we can finally write 

Eam(r', - t ' )  = j-r jh n .  t )  x CG% tlr', t')l 

- Ha(r, t )  x &k(r, tlr', t ' ) }  dsdt . (12) 

Integral formula (12) describes the solution of the con- 
centration equation for the migrated anomalous electric field. 
The corresponding integral representation for the migrated 
anomalous magnetic field can be obtained from (12) using the 
second Maxwell's equation. These integral transformations 
describe the conversion of the anomalous EM field, generated 
by the excess currents in the geoelectrical inhomogeneties and 
diverging in real media, into the migration field, converging to 
the corresponding inhomogeneties. This process is actually 
equivalent to the field transformation in ordinary optical 
holography (Zhdanov 1988). In the next sections we will show 
how this converging field can be used for the solution of the 
EM inverse problem. 

3 MINIMIZATION OF T H E  R E S I D U A L  
EM-FIELD E N E R G Y  FLOW 

The energy flow of the electromagnetic field can be calculated 
using the Poynting vector P (Stratton 1941), introduced by 

the following formula: 

P = E x H .  

The Poynting vector P may be interpreted as the intensity 
of EM energy flow at a given point, that is the energy 
per second crossing a unit area whose normal is oriented in 
the direction of the vector E x  H. For example, the total 
energy flow of the anomalous EM field through the surface of 
the earth C is equal to 

f f  f f  

where n is the unit vector of the normal to the surface C 
directed to the upper half-space (assuming that the sources of 
the anomalous field are located in the lower half-space). 

We denote the observed EM field as {Eobs,Hobs}. The 
theoretical EM field, calculated for the given geoelectrical 
model a(r) = ab(r) + aa(r), we denote as {Epr, Hpr} (predicted 
field). According to eq. ( l ) ,  

Eobs = Eb + E&, Hobs = Hb + Htbs, 
(13) 

E,, = E~ + E;~, H,, = H~ + H;~.  

Now, we determine the residual field {E", HA} as the difference 
between the observed and predicted fields: 

EA(r, t )  = E0& t )  - EPr(r, t )  = E&(r, t )  - E;,(Z t )  > 

HA(& t )  = Hobs(r, t )  - Hpr(r, t )  = H:bs(ri t )  - Hir(r, t ) .  
(14) 

We can introduce the energy flow of the residual field 
through the surface of the earth: 

Q" = jL [EA(r, t )  x H"(r, t)]nds. 

Pankratov, Avdeev & Kuvshinov (1995) have proved an 
important theorem, according to which the energy flow Q" of 
the residual field is non-negative: 

Q " 2 O .  (15) 

Based on this theorem we can introduce the measure @ of 
the difference between the observed and predicted fields as 
the energy flow of the residual field through the surface of 
observations, integrated over the time t :  

@ = j-: 
The advantage of this new functional in comparison with the 
traditional misfit functional is that @(ab) has a clear physical 
meaning, that is the residual-field energy flow through the 
profile of observations. Obviously, the theoretical predicted 
fields Epr(r, t )  and Hpr(r, t )  depend on the anomalous conduc- 
tivity distribution aa(x, z )  in the given geoelectrical model; 
therefore, @ can be treated as a functional of the anomalous 
conductivity model @ = @(a,). 

Thus, the EM inversion problem can be reduced to the 
minimization of the residual-field energy-flow functional, 

@(a,) = min. 

In the following section we will discuss the solution of this 
problem. 

[E"(r, t )  x HA(r, t ) ]  mndsdt 2 0 .  
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4 SOLUTION OF THE MINIMUM 
ENERGY-FLOW PROBLEM 

We apply the gradient-type method to the solution of the 
minimum energy-flow problem, which is based on computing 
the gradient direction for the misfit functional and decreasing 
this functional by moving iteratively 'down the hill' (Tarantola 
1987) in the space of the inverse-problem solutions. 

Following the conventional ideas of the steepest-descent 
method, we calculate the first variation of the energy-flow 
functional in order to find the gradient direction: 

6@ = - n.[E"(r, t )  x 6H;,(r, t )  

- HA(r, t )  x 6E;,(r, t ) ]  dsdt . (16) 

The perturbations of anomalous electric and magnetic fields 
can be expressed through the perturbation of the anomalous 
conductivity 6ua using the integral formulae similar to eq. (4) 
(Zjhdanov & Keller 1994; Wang et a/. 1994): 

.[Eb(r', t ') + E;=(r', t ' ) ]  dv'dt', 

6H;,(r, t )  = j-: jj JD &(r, tlr', t')*hOa(r') 

*[Eb(r', t ' )  + E;#, t ' ) ]  dv'dt'. 

Substituting the last equations into (16) we find 

-HA(r, t )  x Gk(r, tlr', t ' )  ds} dt 

-[Eb(r', t ') + E;,(r', t ' )]  dt'du'. (17) 

According to eq. (12) the integral over the earth's surface can 
be treated as the migration of the residual field: 

j-r n -  {E"(r, t) x G;bH(r, fir', t ' )  

-HA(r, t )  x G;bE(r, tlr', t ' ) }  dsdt = EAm(r', - t ' ) .  (18) 

Substituting eq. (18) into (17), and taking into account (13), 
we obtain 

6@(ga, 60,) = - 6o,(r) {-: Eh(r, -t)*E,,(r, t) dtdu,  

(19) 

where we have omitted the primes on r and t to simplify 
the formula. 

We have to find a perturbation of the anomalous conductivity 
6a,(r) that will reduce the energy-flow functional. In this case 
we go 'down the hill' in the space of the inverse-problem 
solutions. The obvious choice is 

m 

6~a(r)=k,S__E"m(r,  -t)-Epr(r, t ) d t ,  

where k,>O is the length of a step. In this case the first 

variation of the energy-flow functional is negative: 

6@(aa, 60,) = -ko  [[ID ~6Oa(r)12dv<0. 

Let us select the initial conductivity distribution model to 
be equal to the background conductivity, that is the initial 
anomalous conductivity is equal to zero: 

%o)(r) = 0. (21) 
Then the corresponding anomalous part of the predicted field 
E;'p)(r, t )  is also equal to zero: 

E;!')(r, t )  = 0 ,  (22) 

Eg)(r, t )  = Eb(r, t ) .  

and 

(23) 
The first iteration, according to eqs (20), (21) and (23), is given 
by the formula 

O a ~ ~ ) ( r ) = O a ( o ) ( r ) - k o l o ( r ) =  - k l ~ ( r ) >  (24) 
where lo(r) is the gradient direction (with the minus sign): 

co 

lo@) = - EAm(r, -t).E$)(r, t )  d t .  

The optimal length of the step ko can be determined by a 
line search for the minimum (Fletcher 1987) of the functional 

@[ob(x, z )  - k,l,(x, 4 3  = @(k,) = min, 

with respect to k,. Appendix C contains the detailed derivation 
of the corresponding expression for k,. 

Eq. (24) describes the migration imaging condition for 
determining the anomalous conductivity distribution from the 
migrated residual electric field. Obviously, the corresponding 
value c,(l)(r) provides only a first approximation to the real 
anomalous conductivity. To improve the resolution of the 
method, we can repeat the same procedure, which results in an 
iterative time-domain migration. The general iterative process 
can be described by the formula 

~ a ( n +  ~)(r)  = ~ a ( n ) ( r )  + hg(n)(r) = Oa(n)(r) - k n l n ( r ) ,  r E D. 

The gradient direction on the nth iteration, /*(r), can be 
calculated by the formula, analogous to (25), 

I,(r) = - 

where EF;(r, t )  is the field calculated by forward modelling for 
the geoelectrical model with the conductivity distribution 
cra(")(r), and E"n"(r, - t )  is the migration of the residual field 
E"", which is the difference between the observed field and the 
theoretical predicted field, EC, found on the nth iteration. 

It is well known (Zhdanov 1988; Zhdanov & Keller 1994; 
Zhdanov et a/. 1995) that the numerical calculation of the 
migration field is a stable, well-posed problem. However, in 
the case of iterative migration the complete solution of the 
inverse problem is an ill-posed problem. To regularize the 
process of iterative migration we have to introduce a Tikhonov 
parametric functional (Tikhonov & Arsenin 1977): 

m 

E"-"(r, - t)-EF:(r, t )  a t ,  I-m 

Pya) = @(o) + ctS(0). 

The stabilizer S(a) can be determined as an L, norm of 
the difference between the current anomalous conductivity 
distribution o, and some a priori model of the anomalous 
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conductivity gap=: 

In this case the iterative process will be described by the 
formula 

gain+i)(r) = ga(n)(r) - k?l?)(r)> (26) 

where If)(r) is the regularized gradient direction on the nth 
iteration, calculated by the formula 

lt)(r) = - j:: EArcm(r, -t).E$’(r, t )  d t  + cr[g,(r) - gapr(r)], 

and the length of the regularized step k t )  is calculated using 
the line search for the minimum of the parametric functional 

Pa(oin) - k g ) l t ) )  = P“(k?)) = min. 

Thus, we can describe the developed method of EM inversion 
as the process of iterative migration. At every step of the 
iterations we calculate the theoretical EM response for the 
given geoelectrical model ginl(r), obtained from the previous 
step, calculate the residual field between this response and the 
observed field, and then migrate the residual field. The gradient 
direction is computed as a vector cross-correlation between 
the migrated residual field and the theoretical predicted field 
EfJ. Using this gradient direction and the corresponding value 
of the optimal length of the step k$), we calculate the new 
geoelectrical model qcn+ I,(r) on the basis of expression (26). 
The iterations are terminated when the functional @(o) reaches 
the level of the noise energy. The optimal value of the 
regularization parameter is selected using conventional 
principles of regularization theory (Tikhonov & Arsenin 1977). 

5 MIGRATION I M A G I N G  AS A SPATIAL 
FILTERING O F  THE ANOMALOUS 
CONDUCTIVITY 

According to eq. (20) we can develop a migration imaging 
scheme based on the formula 

m 

crma(r’) = ko EAm(r’, --t’)*Eb(r’, t’) dt‘ ,  (27) L 
where ko is determined using eq. (C5) from Appendix C. We 
will call oma(r’), determined using expression (27), a migration 
anomalous conductivity. The important question is how this 
apparent conductivity is related to the real anomalous con- 
ductivity ga. The solution of this question can be found directly 
from formula (27). 

Let us express the residual migration field EAm through the 
observed residual field {EA, HA], using a formula similar to 
(12): 

EAm(r’, - t’) = 1-z jl n{EA(r, t )  x [Gk(r, tlr’, t‘)l 

-HA(r, t )  x Gk(r, tJr‘, t‘)] dsd t .  (28) 
Substituting (28) into (27), we obtain 

gma(r’) = ko jIm j-r jjX n.  {EA(r, t )  x CGkk tlr‘, t’)I 

-HA(r, t )  x GL(r, tlr‘, t ’ ) }  dsdt.Eb(r’, t’) dt‘. (29) 

From the other side, according to eqs (14) and (22), the 
residual field is equal to the observed anomalous field, which 
can be computed using formulae (4) and (5). For example, for 
the electric field we have 

EA(r, t )  = E:bs(r, t )  = 1 O0 1 j jD ma (rn) 
- m  - 

x [Eb(r”, t ” )  + Etbs(r”, t”)]  &k(r, tlr”, t”) du“dt”, 

(30) 

where we use double-prime notation to distinguish r” from r’. 
A similar expression can be obtained for the magnetic field. 

Substituting (30) into (29), we find 

ama(r’)=ko j-: [ j j D  g a ( r ’ f ) * ~ ~ O O  [Eb(r”, t”) +E&(r”, f’)] 

N 

- Gk(r, tlr”, t”) x G’& tlr’, t ’ ) }  dsdt 

-Eb(r’, t’) dt‘dd’dt”. (31) 

Applying the Green tensor formula (B4) from Appendix B 
and executing calculations similar to those of Section 2 for the 
EM migration field, we obtain 

j-1 j l n * { G k ( r ,  tlr”, t”) x [Gk(r, tlr’, t’)] 
N 

N 

- Gk(r, tlr”, t”) x @(r, tlr’, t ’ ) }  dsdt 

= Gkrn(r’, - t’lr”, t”) ,  

where Gkm is the migrated Green’s tensor. 
Substituting (32) back into eq. (31), we obtain 

The last expression can be rewritten in the form: 

f f f  

where 

g(r, r’) = ko [Ebb-, t )  + Etbs(r, t ) ]  1-1 
- &km(rf, - t’lr, t).Eb(r’, t ‘ )  dt‘dt . (34) 

Eq. (33) demonstrates that the migration apparent conductivity 
oma(r’) can be treated as the spatial filtering of the real 
anomalous conductivity with a filter determined by expression 
(34). This filter is formed by the combination of the Green’s 
tensors, which have local extrema at the point r = r ’ .  The 
sharpness of the filter g(r, r’) determines the measure of 
closeness of the migration apparent conductivity to the real 
anomalous conductivity. 
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6 TWO-DIMENSIONAL E M  MIGRATION vector d, is directed downwards. Within this model, the 
electromagnetic field can be described by a single function, E,, 

Consider now a special case of the 2-D E polarized electro- 
magnetic field, excited in a 2-D geoelectrical model by an 

satisfying the equation 

electrical current of density jex =jexdy, which is distributed in ~ ~ ~ , - p ~ ~ ~ - ~ ~ = p ~ - j e x  
the domain Q in the upper half-space. We assume that a t  at ’ 

a a 

{d,, d,, d,} is the orthonormal basis of the Cartesian coordi- 
nate system with the origin on the earth’s surface, and unit and the magnetic field components 

2 

4 
h 

E 

B 6  
W 

3 n 

8 

10 

0 10 20 30 40 50 60 70 80 90 100 
Distance (m) 

I I I I I I I I I 

10 13 17 20 23 27 30 33 37 40 
Ohm*m 

( 3 5 )  

{H,, H,}  can be expressed 

0 20 40 60 80 100 
Distance (m) 

10 13 17 20 23 27 30 33 37 40 
Amplitude 

Figure 1. (a) Conductive and resistive bodies in a two-layered host. (b) Migration result for the model with conductive and resistive bodies in a 
two-layered host. 
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E 
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12 
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Ohm-m 

Figure 2. (a) Conductive and resistive bodies in a host with an inhomogeneous surface layer. (b) Migration results for the model with conductive 
and resistive bodies in a host with an inhomogeneous surface layer. 

by the equations anomalous field as the field equal to the anomalous electric 
field in reverse time on the profile L at the surface of the earth: a aE 

(37) 
p O - H x = >  at az ’ E y y x ’ ,  z’,  t )  = q x ‘ ,  z’, - t ) ,  (x’, z‘) E L ,  

a (36) and satisfying the 2-D analogues of eq. (7): 
-10- H ,  == - . 

at a x  a 
V ~ E ; ~ + ~ , , O ~ - E ; ~ = O .  (38) at  We can introduce the y-component Eirn of a 2-D migration 
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Magnetic components of the 7-D migrated field can be 
calculated using the second Maxwell’s equation: 

Integral formula (12) for the calculation or thc migrated 
anomalous field E;“‘ is transformed into the expression 

+ m  dGb(x, 2, t 1 . ~ ’ ~  z’,  t’) 
c‘U 

E : m ( ~ ’ ,  z‘, -t’) = [ E ; ( x ,  z ,  t )  
f ’  L 

where n is the direction of the normal to the surface of the 
earth L directcd into the upper half-space, and the Green’s 
function Gb(y, z, I /  \‘, 2‘. / ’ )  satisfies the equation 

We have also taken into account in cq. (39) that the Green’s 
function Gb(x,  z, t lx ’ ,  z’, t‘) is causal: 

Gb(x, z ,  tlx’, z’, t’) = O ,  t 5 t’. 

p=ia 

Ohm-m 

In the case of the horizontal line L of observations (z = 0), 
expression (39) can be simplified (Zhdanov & Kcller 1994) to 
the following: 

ES“(x’,z‘, -t’)= - 2  E ; ( x ,  0. t )  

iGb(x ,  0, tl.?, z ’ ,  t ’ )  
X d x d t  , (40) ax  

The last expression gives us the integral method of calculation 
of the migrated electric field. We can also transform this 
formula to find the integral formula for migration of the 
magnetic field. Indeed, let us differentiate the last equation 
with respect to 1’. After integrating by parts, we find 

a a + r n  

-H:m(x‘,z’, at‘ -t’)= -2.6,  j-m 5 K Y x ,  0, t )  

aGb(x, 0, tlx’, z’, t’) 
X dxdt . (41) 

d Z  

Note that typical geophysical EM equipment uses recei\ er 
loops for measuring the components of the magnetic field. 
Therefore. the actual data contain the records of EM induction 
in the loops, which are proportional to the time derivatives 
of the magnetic-field variations ( J /3 t )HZ(x ,  0, t).  Therefore, 
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Figure 4. (a) Migration apparent resistivity for a 3-D model with a conductive body computed using approximate imaging conditions. (b) Migration 
apparent resistivity for a 3-D model with a conductive body computed using the new imaging conditions. 

expression (41) solves the problem of the migration of EM 
induction data. Note that in the 2-D case we can obtain from 
the migrated field (a/at‘)H:m(x’, z’, - t’) the migrated electric 
field again (Zhdanov et a/. 1995), using the second Maxwell’s 
equation for the migration field: 

EF(2,  z’,  - t ’ )  = -H?(X’, z’, - t‘) dx’ . (42) r a  - m  at‘ 

Thus, expressions (40), (41) and (42) solve the problem of the 
calculation of the migrated electric field on the basis of electric 
or magnetic observations. 

We can now use the 2-D analogue of the imaging condition 
(27) to calculate the migration anomalous conductivity 

z’). 

7 PRACTICAL ASPECTS OF 2-D 
MIGRATION IMAGING 

Practical realization of the 2-D theory of EM migration, 
described above, requires the solution of two major problems: 
(1) the determination of the background conductivity, 0,; 

and (2) developing the numerical method of EM migration 
through media with an arbitrary distribution of background 
conductivity, cr,,. 

7.1 Determination of the background conductivity n,, 

There are several publications dedicated to the development 
of simple and fast inversion techniques for the processing of 
transient EM data over inhomogeneous structures (Barnett 
1984; Macnae & Lamontagne 1987; Eaton & Hohmann 1989). 
A majority of these papers were based on equating the transient 
response, measured at the surface of the Earth, to the EM field 
of current-filament images of the source. For example, a rapid 
inversion technique (RIT) developed in Eaton & Hohmann 
(1989) and based on the earlier work of Macnae & Lamontagne 
(1987) proved to be an effective method for determining the 
background resistivity. This approach can be understood well, 
based on the inspirational work of Nabighian (1979), who 
described the behaviour of transient currents diffusing into the 
Earth as a system of ‘smoke rings’ blown by the transmitting 
loop into the Earth. The main limitation of the RIT method 
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Figure 5. Scheme of object locations in the Cold Test Pit. 

is connected to the fact that it is based on a simple 1-D model 
of underground structures. The key formula for inversion is the 
expression relating the velocity, V, of ‘smoke ring’ propagation 
and the conductivity, u, in this model: 

u = f ( V ) .  

The simple assumption results in a significant averaging of the 
real conductivity distribution, so the resolution of the method 
is weak in both the horizontal and the vertical direction. 
However, it is a good method for the background con- 
ductivity determination, which can be useful for the subsequent 
application of EM migration. 

Another approach is based on the time-domain analogue of 
the Niblett or Bostic transform (Niblett & Sayn-Wittgenstein 
1960), which was developed for magnetotelluric data inter- 
pretation. This transform involves algebraic or differential trans- 
formations of the apparent resistivity magnetotelluric sounding 
curve. We can apply the same type of transform to the TDEM 
apparent resistivity curve, calculated, for example, for the 
late time field generated by a horizontal loop transmitter on 
the surface of the earth by the following formula (Spies & 
Frischknecht 1991): 

where m = nAl is the magnetic dipole moment (nA is turns-area, 
I is the current in the transmitter loop). 

The TDEM analogue of the Bostic transform can be 
developed as follows. In as much as p a  is a weighted average 
resistivity, it might be represented approximately as 

pa zz z , /  1 a(z0 dz’ , (43) 

where the running variable z is an efective depth of penetration, 

defined as follows (Nabighian & Macnae 1991): 

z = J G z i z  
Then, 

ZIPa  % u(z‘) dz’. 

(44) 

Differentiating both sides of this last equation with respect to 
z, we obtain 

where 

d z  1 z d p ,  1 d z  

On the strength of eq. (44), 

Z 

(45) 

(47) 

Substituting eq. (47) into (46), and then into (45), we finally 
obtain 

where 

The Bostic transformation can be used for determining 
the background resistivity, ub, distribution if we apply this 
transformation to spatially filtered data. 

7.2 Numerical method of EM migration through 
media with an arbitrary distribution of background 
conductivity, cb 

The problem of EM migration through media with an arbitrary 
distribution of background conductivity, u b ,  can be solved in 
one of two ways. 

(1) The first approach is based on the direct numerical 
solution of eq. (38) with the boundary conditions (37), using, 
for example, the finite-difference method. In the paper by Wang 
et al. (1994) there is an example of the application of the finite- 
difference method for the solution of the same eq. (38) for the 
back-propagated field. The only difference in our case will be 
in using different boundary conditions, those given by eq. (37). 
This is related to the fact that the migrated field in our case is 
the solution of the boundary-value problem for the observed 
anomalous (or residual) field in the reverse time. 

( 2 )  The second approach is based on application of the 
integral formulae (40) and (41). It is noteworthy that these 
equations are the EM counterparts to the Rayleigh integral 
(Schneider 1978) for seismic wavefields. Calculation of the EM 
analogue of the Rayleigh integral requires knowledge of the 
Green’s function Gb(x, z ,  t lx ’ ,  z’, t’). In the simplest case of 
the homogeneous model, ub = const., the Green’s function is 
as follows: 

Gb(x, z, tlx‘, z’, t’) 

[ (x’ - x)’ + (z‘ - z)’] 
1 - 

4n( t - t’) 
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Figure 6. (a) TDEM data observed for the 0 s profile in the Cold Test Pit. (b) Migration apparent resistivity with a homogeneous background for 
the 0 s profile in the Cold Test Pit. 

In the general case of inhomogeneous background con- 
ductivity ob, the corresponding Green's function can be deter- 
mined only numerically. However, we can use a simple 
approach to approximate calculations of the EM analogue of 
the Rayleigh integral. This approach is based on the approxi- 
mation of the real inhomogeneous background conductivity 
by some equivalent effective conductivity, which is different 
for different points (x', z') ,  in which we compute the migrated 
field. 

The basic scheme is as follows. On the basis of the Bostic 
transform or rapid imaging technique, we calculate some 
approximate model for the background conductivity distri- 
bution, which is assumed by definition to be slowly varying in 
the horizontal direction. The kernel of the EM analogue of 
the Rayleigh integral is represented by a relatively narrow 
spatial filter (Zhdanov et al. 1988) with its centre at the point 

(x', 0). We assume that the resistivity varies only in the vertical 
direction and is described by the function p(x' ,  z )  within the 
vertical strip, corresponding to the width of this filter. On a 
vertical axis, passing through the point (x', 0) for each depth 
z' we can introduce the effective resistivity, pef(x', z') ,  by a 
formula similar to (43): 

Now, we use the EM analogue of the Rayleigh integral 
formula with the Green's function, computed using eq. (48) 
with ob = l/pef(x', z ' ) ,  for the migration at the point (x', z' ) .  
This approximate approach makes it possible to develop fast 
and simple methods of integral migration through variable 
background conductivity. We will illustrate the practical 
effectiveness of this approach in the next section. 
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Figure 7. (a) Background apparent resistivity for the 0 s profile in the Cold Test Pit. (b) Migration apparent resistivity with a variable background 
for the 0 s profile in the Cold Test Pit 

7.3 Approximate imaging conditions 

Note that expression (27) involves the calculation of the 
migrated and incident fields for all moments of time t’, which 
requires expensive computations. In the paper by Zhdanov 
et al. (1995), a simplified approach to migration imaging was 
developed, based on the calculation of the apparent migration 
resistivity, pma(x, z) ,  determined for a simple quasi-layered 
geoelectrical model: 

(49) 

where pb = 1/gb, and /3;(x, z )  is the apparent reflectivity 
function. 

This function is determined from the values of the migrated 
residual field (for details see Zhdanov et al. 1995). 

We emphasize that the migration apparent resistivity, pma is 

a function of depth. Thus, we obtain the depth geoelectrical 
cross-section. Actually, the formula (49) can be treated as the 
approximate solution of the integral equation (27), describing 
the relations between the migrated anomalous conductivity, 
oma(x‘, z’), and the real anomalous conductivity cra(x’, z’). 

8 TIME-DOMAIN MIGRATION I N  THE 
SOLUTION OF SYNTHETIC EM PROBLEMS 

We will illustrate the effectiveness of our method of EM 
migration and imaging in the solution of inverse problems 
using some synthetic EM examples. First, we will consider 2-D 
examples. 

8.1 2-D models 

The resistivity imaging technique has been tested on the results 
of numerical modelling with the use of a 2-D finite-difference 
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Figure 8. Horizontal migration apparent resistivity map at a depth of 6 m constructed by horizontal interpolation of migration imaging results 
between the profiles in the Cold Test Pit. 

time-domain code (Oristaglio & Hohmann 1984). Fig. l(a) 
shows the geoelectrical cross-section of the model, which 
contains a highly conducting inclusion (on the right) and a 
poorly conducting inclusion (on the left). The cross-section has 
a two-layered background conductivity. The EM field in the 
model was generated by an infinitely long cable. The observed 
field dH,/dt was recorded in the time interval from 1 p to 
1000 ps on a logarithmic timescale, with 10 points per decade. 
The theoretical survey was conducted in the transmitter offset 
mode, with a transmitter-receiver separation (offset) equal to 
4m. The results of TDEM migration of the secondary field, 
dH,/dt, were then recalculated in the migration electric field. 
This field has been used to compute the migration apparent 
resistivity in the time domain (Fig. 1 b). 

The other 2-D model consists of an inhomogeneous near- 
surface layer with known conductivity and a homogeneous 
basement, which also contains highly conducting and poorly 
conducting inclusions (Fig. 2a). The observed field, dH,/dt, 
was recorded in the time interval from 1 ps to 1000 ps on a 
logarithmic timescale, with 10 points per decade. The theoretical 
survey was also conducted in the transmitter offset mode, with 
a transmitter-receiver separation (offset) equal to 4 m. The 
results of the migration through the inhomogeneous back- 
ground section are shown in Fig. 2( b). One can see very clearly 
the conductive and resistive bodies on this image. 

8.2 3-Dmodel 

The next model was of a 3-D conductive body in a homo- 
geneous medium (Fig. 3b). The synthetic data were calculated 
using a 3-D finite-difference time-domain code (Wang & 
Hohmann 1993). The EM field in this model was excited by a 
rectangular loop transmitter (32 m x 32 m), located at a dis- 
tance of 100m outside the centre of the rectangular 3-D 
conducting body. The magnetic induction data ( a H Z / d t )  were 
simulated along the profile, passing above the centre of the 
conductive body (Fig. 3a). It was recorded in the time interval 
1 ps-1000 ps on a logarithmic timescale, with 10 points per 
decade. 

For the migration of these data we have used a modified 
formula (41) with the substitution of the 2-D Green’s function 
by the corresponding 3-D Green’s function. This modification 
makes it possible to migrate the 3-D EM field observed along 
the profile within the 3-D medium. Actually, this formula can 
also be obtained from the general 3-D migration formula (12) 
if we substitute for the surface integral in (12) the curvilinear 
integral along the profile of observation. From the point of 
view of the solution of the inverse problem it means that we 
minimize the residual-field energy flow through the observation 
profile. 

The results of migration imaging, based on the approximate 

0 1997 RAS, GJI  131, 293-309 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/131/2/293/658181 by guest on 24 April 2024



306 M .  S .  Zhdanov and 0. Portniaguine 

I I I I I I I I 

3 28 52 77 102 126 151 176 201 225 250 

Ohm*m 
Figure 9. The final 3-D resistivity model of the Cold Test Pit based on rapid imaging and time-domain EM migration 

formula (49), are presented in Fig. 4(a). We have used the 
migration-imaging conditions (27), based on the convolution 
between the migrated residual field and the background 

layered model. A further model study should outline the limits 
of practical applications of all of these imaging conditions. 

(incident) field, to produce the image presented in Fig. 4(b). 
We can clearly see the conductive body on both of these 

images. However, the image based on convolution (Fig. 4b) 
estimates the depth of the conducting body top slightly better 
than the image in Fig.4(a), while the shape of the body’s 
vertical cross-section is slightly distorted, possibly by the effect 
of the primary field. We can also see a resistive shadow to the 
right of the body. This shadow is the side effect induced by 
the primary field. We expect that the application of the second 
or third iteration within the framework of iterative migration 
could correct this image. Nevertheless, the theoretical advan- 
tage of the imaging conditions (27) seems to be that these 
conditions were derived for an arbitrary geoelectrical model, 
while conditions (49) were obtained for a simplified quasi- 

9 CASE HISTORY: INTERPRETATION O F  
RWMC TDEM DATA 

The time-domain EM migration method has been applied in 
order to characterize waste sites using time-domain electro- 
magnetic (TDEM) data. The main task was the interpretation 
of the TDEM data set acquired at the Cold Test Pit site within 
the Radioactive Waste Management Complex (RWMC) at the 
Idaho National Engineering Laboratory (INEL) (McLean 
1993). The Cold Test Pit was specially designed to test different 
geophysical methods. The internal structure of the pit was 
known a priori and the results of migration could be checked. 
A schematic plan of the Pit is presented in Fig. 5. We have 
processed, by the time-domain electromagnetic migration 
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method, data obtained as a result of a high-density TDEM 
profiling survey using a Geonics EM47 instrument along a set 
of profiles, crossing INEL RWMC Cold Test Pit from the west 
to the east. The survey was conducted in the transmitter offset 
or slingram mode, as described by McLean (1993). The 
transmitter-receiver separation (the distance between the 
centre of the transmitter loop and the centre of the receiver 
loop) was equal to 12.5 m. The geoelectrical structure of the 
pit is 3-D making it impossible to use conventional methods 
to interpret these data. 

In an earlier paper (Zhdanov et al. 1995) we used as an 
effective background resistivity pb = 100 Q m. As a result of 
processing TDEM data using the migration method we have 
obtained a set of vertical cross-sections of the Cold Test Pit 
for a homogeneous background cross-section. The observed 
TDEM data and the typical cross-sections of the migration 
apparent resistivity along the profile 0 S (zero South) are 
presented in Fig. 6. 

In this paper we apply a two-step imaging technique to 
process the same data. On the first step we use rapid imaging, 
developed by Eaton & Hohmann (1989), to produce a 
background conductivity distribution, which is presented in 
Fig. 7(a). On the second step we use the migration through 
this variable background to compute the resistivity image of 
the vertical cross-section (Fig. 7b). As we can see, the new 
migration image is close to the old one (Fig. 6b), but has a 
variable background resistivity distribution. Fig. 8 shows the 
horizontal resistivity map at a depth of 6 m  obtained by 
horizontal interpolation of migration-imaging results between 
the profiles. The final 3-D resistivity model of the Cold Test 
Pit (Fig. 9), based on rapid imaging and time-domain EM 
migration, consists of several horizontal resistivity maps for 
different depths. It demonstrates that this method can be used 
to determine the structure of anomalous resistivity distribution 
in INEL RWMC Cold Test Pit. The migration image compares 
well with the schematic model of the pit that has been provided 
by the constructors (Fig. 5). The depths and the locations of 
the conductive sections of the pit also correspond well with 
the known structure of the pit. 

10 CONCLUSIONS 

In this paper we have described new results in the develop- 
ment of the electromagnetic migration method. First, we 
demonstrated that EM migration can be viewed as the solution 
of the inverse EM problem, formulated as the minimization 
of the residual EM-field energy flow through the surface of 
observations. Second, we generalized the EM migration 
method and theory for 3-D geoelectrical structures and 3-D 
EM data. Third, we developed a method of EM field migration 
through a variable-background geoelectrical cross-section. We 
have tested the method on 2-D and 3-D geoelectrical models, 
typical for mining and oil and gas exploration. 

These new results permit the application of the EM 
migration method to the interpretation of real TDEM data, 
collected in 3-D geoelectrical structures. We have illustrated 
the practical results of time-domain EM migration by applying 
it to the actual TDEM field data collected at the Cold Test 
Pit site within the Radioactive Waste Management Complex 
at the Idaho National Engineering Laboratory. 
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APPENDIX A: ELECTROMAGNETIC 
GREEN’S TENSORS 

The electromagnetic Green’s tensors, G;, @,, being fields of an 
elementary electric source, follow Maxwell’s equations (Felsen 
& Marcuvitz 1973): 

v x Gk = o b  Gk + &(r - r’)s(t - t o ,  

they are causal: 

G;(r, tIr!,t‘)=O, Gk(r,tlrf,tf)=O, t i t ’ .  

Eq. ( A l )  suggests that G; also satisfies the equation 

The EM Green’s tensors exhibit symmetry and can be shown, 
using the Lorentz lemma, to satisfy the following reciprocal 
relations (Stratton 1941): 

N 

where the large tilde denotes the operation of transposition. 
The last conditions show that by replacing the source and 

receiver (that is the points r’ and r) and by going simultaneously 
to the reverse time, - t  (therefore, by retaining the causality, 
because the condition t < t‘ in ordinary time implies the 
condition - t > - t’ in reverse time), we obtain the equivalent 
EM field, described by the Green’s tensors @(rf, t’lr, t )  and 
Gk(rf, t’lr, t ) .  

Following Morse & Feshbach (1953) and Felsen & 
Marcuvitz (1973) we can introduce also the adjoint Green’s 
tensors: 

N 

&b + (r, tlr’, t ‘ )  = &r’, tlr, t ) ,  
N (A41 

GF (r, tlr’, t’) = G:(r’, t+-, t ) .  

They satisfy the following equations, obtained from (Al) by 
reversing the sign of all space-time coordinates: 

v x Gp = -a,&;+ - h ( r - r f ) a ( t - t f ) ,  

and eq. (A2) takes the form 

(‘45) 

The adjoint Green’s tensors are anticasual: 
G b  + (r, tlr’, t’) = 0 ,  

&b + (r, tlr’, t’) = 0 ,  t 2 t’ 

APPENDIX B: TENSOR STATEMENTS O F  
THE G A U S S  A N D  GREEN FORMULAE 

This appendix briefly describes the fundamental theorems of 
tensor analysis, which are widely used in our paper. The 
notation closely follows the monograph of Zhdanov ( 1988), 
where one can find further details. 

Let G =  Qr)  be a tensor field differentiable continuously 
everywhere in the domain D right to its boundary S. The 
tensor statement of the Gauss theorem can be expressed by 
the following formula: 

where n is the unit vector of an outward-pointing normal to S. 
The Green tensor formula derives from the expression (Bl). 

Indeed, let us specify an auxiliary tensor field Qr): 

G = F  x [V x P] + [V x F] x P ,  

where F and Pare  arbitrary vector and tensor fields, respectively, 
twice continuously differentiable in the domain D (up to its 
boundary S). The algebraic calculations show that 

V . G = [ V x V x F ] . ~ - F * [ V x V x @ ] .  (B2) 

Substituting eq. (B2) into the Gauss tensor formula ( B l )  we 
write in the final form the Green tensor formula 

{ [V x V x F1.P- F * [ V  x V x PI}  dv 

= j”l n.  { F  x [V x P]  + [V x F] x 3) ds . 

= js, n. {Q x [V x PI + [V x Q1 x 8) ds.  

= 
j” jSn*{F 

x [V x B] - B  x [V x F]} d s .  

033) 

If the vector field F is replaced by the tensor field Q, we arrive 
at another Green tensor formula: 

([V x v x Q , . P -  Q.[V x v x P, ,  d” 

(B4) 

Finally, if the tensor field 
vector field B, we obtain the Green vector formula 

j”j”ID ([V x V x F1.B- [V x V x B1-F) dv 

in eq. (B3) is replaced by the 

(B5) 

APPENDIX C: DETERMINATION O F  THE 
OPTIMAL STEP k ,  

Let us determine the optimal step length k,. To do so we can 
substitute eq. (24) into (4), in which the integral operator is 
linearized, using the Born approximation, and calculate the 
approximate electric field for the model with anomalous 
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conductivity, ga(’)(r): 

EFJ(r, t )  z Eb(r, t) + 1-1 j J jD bi(r, t~r’, t’) 

-aacl,(r)Eb(r’, t’) du‘dt’, (C1) 

H$)(r, t) z Hb(r, t )  + J;m jjs, &-> tlr’, t’) 

- ~ ~ ( ~ ) ( r ) E ~ ( r ‘ ,  t’) du’dt’ . (C2) 

Thus, we have the following for the residual-field energy flow 
functional: 

@(ga(l)) = z, - k O l @ ( x ,  z)l = 

= j-1 jl [EA(’)(r, t) x HA(’)@, t ) ] . n d s d t ,  (C3) 

where 

EA(’)(r, t) = E,b,(r, t) - Eg)(r, t ) ,  

HA(’)(r, t )  = Hobs (r, t) - HrJ (r, t )  . 

Substituting eqs (C4), ( C l )  and (C2) into (C3), and taking into 
account eq. (24), we obtain 

@ ( g a ( ~ ) )  = @[gb(x, 2 )  - kolo(x, z ) ]  

[l [Eobs(r, t ,  - Eg)(r, t)l 

x [Hobs(r, t) - H$(r, t ) ]  .ndsdt  

= j;m CEA(r, t )  + koEl0(r’, t’)l 

x [HA(r, t) + k,HlO(r’, t ’ ) ] - n d s ’ d t ‘ ,  

where the field {E’o, H’o} is an electromagnetic field, calculated 
using the Born approximation for the geoelectrical model, 
perturbed in the gradient direction: 

E’O(r, t) = [-: [!ID Gi(r, tlr’, t’)-lo(r’)Eb(r’, t’) du’dt‘, 

H’O(r, t) = j-: JjlD Gk(r, tlr’, t’)*lo(r’)Eb(r’, t’) du’dt ’ .  

Now we can find the first variation of @(k , )  with respect to 
k, : 

6@(ko)  = 6ko I-: jl { [EA(r, t) + koE’O(r‘, t’)] x H’o(r’, t’) 

- [HA(r, t) + koH’O(r’, t’)] x E’o(r’, t ’ ) }  ends‘&‘ = 0 .  

The necessary condition for the minimum of @(k , )  is 

6@(ko) = 0.  

From the last equation we have 

k, = { jm [H’o(r’, t’) x EA(r, t) 
2 - m  

+HA(r, t) x Ezo(r’, t ’ )] .nds’dt’}  

*{j:m [LE’o(r‘, t‘) x H’o(r‘, t‘)*nds‘dt‘ (C5) 
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