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S U M M A R Y  
We developed a new inversion method to  reconstruct static images of seismic 
sources from geodetic da ta ,  using Akaike’s Bayesian Information Criterion (ABIC). 
Coseismic surface displacements are generally related with a slip distribution on  a 
fault surface by linear integral equations. Parametric expansion of the fault slip 
distribution by a finite number of known basis functions yields a set of observation 
equations expressed in a simple vector form. Incorporating prior constraints on  the 
smoothness of slip distribution with the observation equations, we construct a 
Bayesian model with unknown hyperparameters. T h e  optimal values of the 
hyperparameters, which control the structure of the Bayesian model, are objectively 
determined from observed da ta  by using ABIC. Once the  values of hyperparameters 
a re  determined, we can use the  maximum likelihood method to  find the optimal 
distribution of fault slip. W e  examined the validity of this method through a 
numerical experiment using theoretical data with random noise. We analysed 
geodetic data associated with the  1946 Nankaido earthquake (Ms = 8.2) by using this 
method. The  result shows that the  fault slip distribution of this earthquake has two 
main peaks of 4 and 6 m, located off Kii Peninsula and  Muroto Promontory. These 
two high-slip areas a re  clearly separated by a low-slip zone extending along Kii 
Strait. Such a slip distribution corresponds with the  fact that the  rupture process of 
this earthquake in the western part is notably different from that in the eastern part. 

Key words: ABIC,  Bayesian modelling, fault slip distribution, geodetic data. 

1 INTRODUCTION 

The occurrence of a large shallow earthquake brings about 
notable surface displacements in and around the focal area. 
The coseismic surface displacements are obtained from the 
comparison of pre- and post-seismic geodetic measurements. 
The representation theorem in elastodynamics relates the 
surface displacements with a slip distribution on a fault 
surface by linear integral equations. Therefore we can set up 
the inverse problem of reconstructing the static image of a 
seismic source from observed geodetic data. 

The problems of geodetic data inversion may be divided 
into two classes according to whether the geometry of a fault 
surface is known or not. When the fault geometry is 
unknown, which is the case of most intraplate earthquakes, 
the problem is essentially non-linear. This class of problems 
has been treated in a series of papers by Matsu’ura and his 

* Present address: Hydrographic Department, Maritime Safety 
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co-workers (Matsu’ura 1977a, b; Matsu’ura et al. 1980; 
Matsu’ura & Hasegawa 1987). When the fault geometry is 
known, which is the case of large earthquakes occurring at 
plate boundaries, the problem becomes linear. In the 
present study we treat only this class of problems. 

In the second class of problems the unknown is the spatial 
distribution of slip vectors on a given fault surface. We 
usually divide the fault surface into a number of fault 
patches and take the dip-slip and strike-slip components on 
each fault patch as unknown parameters. Furthermore, if 
the directions of slip vectors are known, the problem 
becomes much simpler; the unknown is only the magnitude 
of slip vectors. Miyashita & Matsu’ura (1978), Ward & 
Barrientos (1986), and Barrientos (1988) have treated such a 
special case. 

To obtain a clear image of a seismic source, in general, we 
must take the number of fault patches, and hence the 
number of model parameters, as large as possible. However, 
the increase of the number of model parameters amplifies 
estimation errors and leads to instability in the solution, 
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because observed data are always inaccurate and 
insufficient. As pointed out by Backus & Gilbert (1970), the 
essential problem in geophysical data inversion is to 
compromise these reciprocal requirements for model 
resolution and estimation errors in a natural way. In the 
formalism of linear inversion, Jackson (1979) demonstrated 
that t h e  explicit use of prior information about model 
parameters enables us to naturally resolve this essential 
problem. Jackson’s approach for linear inversion was soon 
extended to non-linear cases by Tarantola & Valette 
(1982a, b), Jackson & Matsu’ura (1985), and Matsu’ura & 
Hasegawa (1987) on the basis of probability theory. 

The prior information available for the present problem 
comes from several different sources. From seismological 
observations, for example, we may obtain some prior 
information about the extent of a faulting region and the 
average magnitude and direction of slip vectors. This sort of 
prior information can be treated in the same way as 
observed data, since the degree of its uncertainty is fairly 
definite. Another sort of prior information comes from 
physical consideration for earthquake rupture; that is, the 
spatial variation of fault slip must be smooth in some degree 
because of the finiteness in the fracture strength of actual 
rocks. In the classical inversion methods this sort of prior 
information has been used in an implicit way to  judge 
whether or not the inverted result is physically reasonable. 

In the  present study, we combine the prior information 
about the smoothness of fault slip distribution with the 
information coming from observed data by using Bayes’ 
theorem, and construct a highly flexible model with 
hyperparameters, called a Bayesian model. The Bayesian 
model consists of a family of parametric models; that is, 
different values of hyperparameters give different para- 
metric models. The selection of a specific model from 
among the family of parametric models can be objectively 
done by using a Bayesian information criterion (ABIC) 
proposed by Akaike (1980) on the basis of the entropy 
maximization principle (Akaike 1977). Once a specific 
parametric model is selected, we can use the maximum 
likelihood method to determine the optimum values of 
model parameters. 

In Section 2 we formulate the problem and develop a new 
method of geodetic data inversion. The  validity of this 
inversion method is examined through a numerical 
experiment in Section 3. To demonstrate the applicability of 
our method to actual cases, we analyse the geodetic data 
associated with the 1946 Nankaido earthquake in Section 4. 

2 M A T H E M A T I C A L  F O R M U L A T I O N  

2.1 Representation of surface displacements 

We consider a discontinuity in tangential displacement, 
Au(g), across a fault surface S embedded in a homo- 
geneous, isotropic, elastic half-space (x3 5 0) as shown 
in Fig. 1. According to  the representation theorem in 
elastodynamics (Maruyama 1963; Burridge & Knopoff 1964; 
Backus & Mulcaphy 1976a, b), the static surface displace- 
ments ui(x)  caused by the displacement discontinuity can be 

Figure 1. A schematic diagram showing the system of coordinates 
and the geometry of a fault surface. S indicates a fault surface 
embedded in the elastic half-space ( x , S O ) .  n is a unit normal to S 
and Au i s  a slip vector on S. 

expressed in the following integral form: 

where GiP,,(x, 5 )  is the derivative of Green’s tensor 
Gip(x, 4)  with respect to E,, m,,(g) the moment tensor 
density localized on the fault surface S, p the rigidity of the 
medium, and n j ( $ )  the j component of a unit normal to  the 
fault surface. The  analytical expressions of G,,,, which 
were first obtained by Maruyama (1964), are given in 
Appendix A.  

We may define the fault surface S(6)  by 

in the case of low-angle faults. Then the components of the 
unit normal vector n are given by 

with 

af 
a E/ 

&=-  ( j = l , 2 ) .  

(4) 

Once the geometry of a fault surface is given, the three 
components of the slip vector Au are no longer independent 
of one another. The components of the slip vector must 
satisfy the following condition: 

7 c n,Au, = - f iAu,  - f2Au2 + Au3 = 0 
/ = I  

or, choosing Au, and Au2 as independent variables, 

Au3 = f ,Au,  + f2Au2. (7) 

Then we may rewrite the expression for the static surface 
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and M,,,(s) is the B-spline function of order 4 (degree 3) 
with an equally spaced local support (s, - 4A.s 5 s < s,), 
defined by the following de  Boor-Cox recurrence formula 
(de Boor 1972; Cox 1972): 

displacements as 
7 3 r  

+J(Gi3,r + Gtr,3)l(nr/n3)Au/ ’51 ’62. (8) 

Our problem is to  estimate the spatial distributions of 
Aul(E1, E2) and Au2(E1, E2) from observed surface 
displacement data. The distribution of the remaining slip 
component, Au,(E,, E2), can be directly reconstructed from 
A u l  and Au2 by using equation (7). 

2.2 Parametric expansion of slip distribution 

We represent the spatial distribution of each slip component 
by linear combination of a finite number ( K L )  of basis 
functions ak/ defined on the t1-E2 plane as 

K 1. 

A U j ( E 1 7  E 2 ) =  C C a j k / @ k / ( E 1 !  5 2 )  (;= 1, 2). 19) 
k = l  I = 1  

Substituting this expression into equation ( S ) ,  and carrying 
out the integration with respect to E l  and E2, we obtain the 
following relation: 

2 K L 

U i =  c c H j 1 k f l j k /  ( i =  1, 2 3 ,  (10) 
j = l  k = l / = l  

with 

For a given point on the surface of the semi-infinite medium 
we can evaluate the above integral straightforwardly. Then 
our problem can be reduced to  the problem of determining 
the values of the expansion coefficients a,kr ( j  = 1, 2; 
k = 1, . . . , K ;  I = 1, . . . , 15) from observed data. Once the 
values of aIkr are determined, we can reconstruct the spatial 
distribution of each slip component by using equation (9). 

As the basis functions we choose the normalized bicubic 
B-splines defined by 

where 
( k = 1 ,  . . . ,  K ; 1 = 1 ,  . . . ,  L) ,  (12) 

Concrete expressions for M4,,(s) are given in Appendix B. 
The normalized bicubic B-spline aA/(E1, E2) has a bell 

shape and takes the maximum value of 1 .O at the ( k ,  I) knot 
point on the g1-E2 plane. Fig. 2 gives the graphic 
representation of @ k l ( , $ ,  , t2). 

2.3 Observation equations 

Let u,(x,,) be the observed value of the vertical (i = 3) or 
horizontal (i = 1 or 2) component of coseismic surface 
displacement at x = xp. Then, using the theoretical relation 
(lo), we may write observation equations as 

2 K 1. 

ui(Xp) = c c c H t / k / ( x p ) u l k l  + eW’  (16) 
/ = I  k = l  / = I  

where eip denote random errors, consisting of measurement 
errors and modelling errors. 

Now we rearrange the observed data u,(x,,), the random 
errors e,/,, and the expansion coefficients aIkc in some order, 
respectively, and define a data vector d ,  an error vector e, 
and a model parameter vector a as 

dT= [u,(x~), ui(xZ), . . . , ~ I ( x N , ) ;  u ~ ( x I ) > u ~ ( x ~ ) ,  . . . 3 u2(xNl); 

U3(XNl+ , ) .  U J ( X N , + Z ) .  ‘ ’ ’ 3 ~ 4 X N , + N 2 ) 1 3  (17) 

e’ = [ e l l ,  e I2 ,  . . . I e lNl ;  e 2 1 t  e22,  . . . , e2Nl; 

e3N,+l l  %v1+2, ’ .  ’ e3N,+NZI’  (18) 

a*= [ a l l l ,  a I l 2 , .  . . , a l l 1 . ; .  . . ; a l K l ,  a l K Z ,  . . . , a l K I ~ ;  

a2llr n212?.  , . , u21[.;. . . ; a 2 K l ,  a 2 K 2 , .  . . a2K12] .  (19) 

Then the observation equation (16) can be rewritten in the 

m 

k-2 k-1 k k+l k+2 
Figure 2. Graphic representation of  a bicubic B-spline function 
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following simple vector form: 

d = H a + e  (20) 

where H is a N(=2Nl + N2)  X M (  =2KL) dimensional 
coefficient matrix, whose IJ element is defined by 

= Hc/k,(xp)  (21) 

with 

(i - 1)N, + p 

(i - l)Nl + ( p  - N , )  
if i = 1 or 2, 
if i = 3, 

I = {  

and 

J = ( j  - 1)KL + ( k  - l ) L  + 1. (23) 

The observation equation (20) contains the random errors 
e, which generally consist of measurement errors and 
modelling errors. The modelling errors come from 
deficiency in theoretical modelling, and so depend on the 
number of basis functions used for the parametric 
expansion. For simplicity we assume the errors e to be 
Gaussian, with zero mean and covariance U’E: 

e - N ( O ,  2%) (24) 

where o2 is an unknown scale factor for the covariance of e .  
This assumption will be justified when the modelling errors 
are much smaller than the measurement errors. Then, from 
equations (20) and (24), we have a stochastic model which 
relates the data d with the model parameters a as 

p(d I a; a’) = (2n(r2)-”’11Ell-”* 

I 1 
x exp [ - 3 (d - Ha)TE-’(d - Ha) . (25) 

Here IlEll denotes the absolute value of the determinant of 
E. Given the data d, we may regard p(d I a; a’) as a function 
of a and a’. When so regarded, following Fisher (1922), we 
call it the likelihood function of a and a’ for given d, and 
use it as a basic device for the extraction of the information 
supplied by the data. 

2.4 Prior constraints 

It is now widely accepted that the source of earthquakes is 
brittle shear fracture occurring in the earth’s interior. Since 
the fracture strength of rocks is finite, the stress field in and 
around the faulting region is also finite. The  finiteness in 
stress requires the smooth variation of slip along the fault 
surface. This is a kind of prior information about the fault 
slip distribution. 

As a measure of the roughness of fault slip distribution we 
introduce the following quantity: 

with 

h, = (i = 1 ,  2). 

Here n 3  and f; (i = 1, 2) are the 6-dependent variables 
defined in equations (4) and ( 5 ) .  For simplicity we consider 
the case in which the distortion of the fault surface is not so 
strong. In such a case we may replace h ,  , h,,  and n3 in (26) 
with their spatial averages, h,,  h2, and fi,, on the fault 
surface. Then, substituting equations (9) and (12) into 
equation (26), we obtain 

Z K L K L  

r = c c c c c a/klRJkl/>yajl><, 
/ = I  k = l  I = l p = l  y = l  

with 

or, in vector form, 

r = aTGa 

where G is a M X M dimensional symmetric matrix, whose 
ZJ element is defined by 

‘1, = RJk/p</ (31) 

with 

I = ( j  - 1)KL + ( k  - l ) L  + I ,  

J =  ( j  - 1)KL + ( p  - 1)L + 9. 

The integrals in equation (29) vanish when Ik - P I  or 
11 - q I z 4, since NJ(s) are the normalized cubic B-splines 
with the local support of sl - 2As 5 s < sJ + 2As. Therefore 
G becomes a sparse matrix with a simple known structure. 

The quantity r defined by equation (30) has a 
positive-definite quadratic form of a. Therefore, using this 
quantity, we may represent the prior constraints on the 
roughness of fault slip distribution in the form of a 
probability density function (pdf) with a hyperparameter p’ 
as 

1 .  
p(a; p’) = (2np2)-”’ ~ ~ A ~ , ~ ~ ” ’  exp (- - a’Ga) 

2P2 
(33) 

where P is the rank of the matrix G, and llApll represents 
the absolute value of the product of non-zero eigenvalues of 
G .  The hyperparameter p’ controls the prior distribution of 
a, and hence the roughness of fault slip distribution; that is, 
the large value of p2 permits the rough distribution of fault 
slip, and the small value of p’ requires the smooth 
distribution of fault slip. 

2.5 Bayesian modelling and ABIC 

Now we incorporate the prior distribution p(a; p’) in 
equation (33) with the data distribution p(d  I a; a’) in 
equation (25) by using Bayes’ theorem, and construct a 
highly flexible model with the hyperparameters, a’ and p’,  
called a Bayesian model: 
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a, we obtain 

L ( 2 ,  a’) = (2nu’)-(N+P--M):2 ( 11 Ell ‘I’ 1 1  A, 1 1  ’” 
where c is a normalizing factor defined by 

c = l/],o(d I a; u’)p(a; p’) da. (35)  

Substituting equations (25) and (33) into equation (34), and 
introducing a new hyperparameter a2( = a’/p’) instead of 
p’, we obtain 

with 

s(a) = (d - Ha)TE-’(d - Ha) + a2aTGa. (37) 

Our problem is to  find the values of a, a’, and a’ which 
maximize the posterior pdf in equation (36) for given data d. 

First we consider the case in which the hyperparameters, 
2 and a’, are fixed to  certain values. Then the maximum of 
the posterior pdf is realized by minimizing s(a) in equation 
(37). For any solution which minimizes s(a), the variation of 
s(a) with respect to a must vanish. Thus we obtain a 
fundamental equation to be satisfied by the solution a* 
(Jackson & Matsu’ura 1985): 

HTE-’(d - Ha*) - a’Ga* = 0. 

a* = (HTE-’H + a2G)-’HTE-’d. 

s(a*) = (d - Ha*)TE-’(d - Ha*) + a2a*TGa* 

s(a) =s(a*) + (a - a*)T(HTE-’H + a2G)(a - a*). 

(38) 

(39) 

(40) 

(41) 

The solution of the above fundamental equation is given by 

Then, denoting 

we can rewrite s(a) in the following form: 

From equations (36) and (41) we can see that the posterior 
distribution of a is Gaussian with the mean of a* and the 
covariance of 

C = u2(HTE-’H + a%-’ .  (42) 

Now we go back to  the case in which u’ and a’ are  
unknown parameters as well as a. To determine the best 
estimates of the hyperparameters, we use a Bayesian 
information criterion (ABIC) proposed by Akaike (1980) on 
the basis of the entropy maximization principle. In the 
present case, where the number of adjustable hyperpara- 
meters is definite, ABIC is defined by 

A B I C =  (-2) log L(o’, p’) (43) 

and the values of 2 and p2 which minimize the ABIC are 
chosen as the best estimates of the hyperparameters. Here 
L ( 2 ,  p’) is called the marginal likelihood of u2 and p’. 

Changing the hyperparameter p2 to a’ ( = d / p ” ) ,  and 
carrying out the integration in equation (44) with respect to  

x IIH’E-’H+ a’GII-’/’exp [ ----s(a*)]. 1 (45) 2a2 

The minimum of ABIC is realized by maximizing L(u2, a’). 
Thus the necessary conditions for the minimum of ABIC are 

dL(U2,  a’) 
a 2  = 0  

and 

dL(a2,  a’) 
da’ 

= 0. (47) 

Solving equation (46) for a’, we obtain 

a’ = s(a*)/(N + P - M), (48) 

where s(a*) is the quadratic function of a* defined in 
equation (40). If we substitute the above expression for u’ 
into equation (47), we will obtain an equation to  be solved 
for a’. This equation is, however, a non-linear equation, 
and so we cannot solve it analytically. 

We substitute equation (48) into equation (45). Then, 
following the definition, we may write the ABIC in the form 
of 

ABIC(~’) = ( N  + P - M) - P log 

+log IIHTE-’H + a2GII + C (49) 

where C is a constant term independent of a’. The search 
for the value of (Y’ which minimizes the ABIC can be 
carried out numerically. Once the value of a’ minimizing 
the ABIC has been found, denoting it by &’, we can obtain 
the best estimate of a from equation (39) as 

i = (HTE-’H + PG)-’HTE-’d 

6’ = s ( i ) / ( N  + P - M) 

~(i) = (d - HP)TE-’(d - Hi) + CX’S~GL. 

(50) 

(51) 

(52) 

and the best estimate of a’ from equation (48) as 

with 

The covariance for the estimation errors of i is calculated 
from equation (42) as 

C = 6’(HTE-‘H + & - ’ .  (53) 

3 A NUMERICAL EXPERIMENT 

In the preceding section we developed a new method of 
geodetic data inversion by using Akaike’s Bayesian 
Information Criterion (ABIC). Now we examine the validity 
of this inversion method through a numerical experiment. 
The numerical experiment is done in the following way. 
(1) Give a true slip distribution on a fault plane embedded 
in an elastic half-space. (2) Compute surface displacements 
at observation points. (3) Make a set of synthesized data by 
adding random noise to  the theoretical displacements. 
(4) Invert the synthesized data and reconstruct the slip 
distribution. The validity of our inversion method will be 
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checked by comparing the inverted slip distribution with the 
true slip distribution. 

3.1 

We consider a right-lateral, reverse faulting on a low-angle, 
rectangular plane embedded in an elastic half-space as 
shown in Fig. 3(a). On this fault plane we continuously 
distribute slip vectors with a uniform direction (slip- 
angle = 120") but different magnitudes. The distribution of 
slip magnitudes is shown in Fig. 3(b). The slip magnitude 
distribution has a broad main-peak of 7.4 m and a subpeak 
of 3.5 m. For this slip distribution, using the theoretical 
relation (8). we compute horizontal surface displacements at 
50 observation points and vertical surface displacements at 
105 observation points. Then, adding random noise with 
zero mean and 3.4 x lo-' m standard deviation to these 
theoretical surface displacements, we make a set of 
synthesized data. The synthesized surface displacement data 
are shown in Figs 4(a) (horizontal component) and (b) 
(vertical component) with the locations of observation 
points. Here it should be noted that the synthesized data are 
very accurate and the data coverage is almost complete. 

A true slip distribution and synthesized data 

3.2 ABIC and inverted slip distributions 

We divide the rectangular model fault region ABCD in Fig. 
3 into 18 ~9 subsections and distribute 15x6  bicubic 
B-splines so that they cover homogeneously the whole 
model fault region. The distribution of each slip component 
(Au, or Au,) on the rectangular fault plane i s  represented 
by the superposition of the 15 X 6 bicubic B-splines with 
various amplitudes. Therefore the number of model 
parameters sums to 180. Following the procedure described 
in the preceding section, we construct a Bayesian model 
with the hyperparameters, u2 and (Y' ( = 0 2 / p 2 ) ,  which 
controls the structure of the parametric model Then our 
problem is to determine the optimal values of the 180 model 
parameters and the two hyperparameters from the 205 
synthesized surface displacement data. 

First we search numerically for the value of aL which 
minimizes the ABIC defined in equation (49). From Fig. 5 ,  
where the ABIC is plotted as a function of a', we can find 
that the ABIC takes the minimum at o? = 2.3 x Once 
the optimal value of a2 is determined, the best estimates of 
the model parameters a and the hyperparameter C? are 
directly computed from equations (50) and (51). In Fig. 6(a) 

A B 

Figure 3. The true fault model used for the numerical experiment. (a) Fault geometry and slip direction. (b) Distribution of slip magnitude. 
The contour intervals are 0.5 m. The slip magnitude tends to zero at the fault margins. 
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. b  . . . . . .  . . . . .  
. 

I . . .  

. . .  c.. --__--__ 
X I  

(b) 
Figure 4. The surface displacement data used for the numerical 
experiment. (a) Horizontal displacements. (b) Vertical displace- 
ments. The rectangle ABCD indicates the projection of the model 
fault region on the surface. The solid circles indicate observation 
points. 

we show the spatial distribution of slip vectors on the 
rectangular fault plane, reconstructed by substituting the 
best estimates of a into equation (9). The corresponding slip 
magnitude distribution is given in Fig. 6(b). Comparing Fig. 
6 with Fig. 3, we can see that the true slip distribution is 
almost completely reconstructed in the case of ABIC 
minimum. 

To demonstrate the validity of ABIC we show the 
inverted slip distributions for the inappropriate choice of the 
value of a'. Fig. 7 is the case in which the value of a' is 

- 8 0 0  I I I I 1 I I I I 1 
1 0 " O  10-8 1 0 - 6  1 o - ~  1 0 . 2  

HYPERPARAMETER a* 
Figure 5. The values of ABIC plotted as a function of a'. The 
ABIC takes the minimum at a' = 2.3 X 10 -6 .  

. . . . . . . . . .  

, . + \ " '\ ' 1 ' ? ,  t ' ! 1  ' , , . . . . . . . . . . . . . . . .  
- z  n 

I A  

I C  nl 

(b) 
Figure 6. The optimal fault slip distribution inverted from the 
synthesized surface displacement data. (a) Distribution of slip 
vectors. (b) Distribution of slip magnitude. The rectangle ABCD 
indicates the model fault region. The contour intervals are the same 
as those in Fig. 3. 

I .  7 . . . . . . . . . . .  I .  - 4  

..... t \ I \ \ \  ..... ! ........ . . . . . . . . . . . . . . . . . .  I - . ,  I 

~ 1 V 

Ibl 

Figure 7. The inverted fault slip distribution when the value of a* is 
too small. (a) Distribution of slip vectors. (b) Distribution of slip 
magnitude. 
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I A  

4 

. I 

we show the estimates of u2 for the three representative 
cases corresponding to Figs 6, 7, and 8. In Case 1 (the case 
of ABIC minimum) the value of u2 is correctly estimated. 
This warrants that our choice of a' based on ABIC is 
appropriate. In Case 2 the value of u2 is underestimated. 
The irregular slip distribution in Fig. 7 is ascribed to  random 
noise in the data. In Case 3 the value of u2 is fairly 
overestimated. The reason why the slip distribution in Fig. 8 
is too smooth is because a part of the useful information in 
data has been discarded as noise. 

4 APPLICATION TO THE 1946 NANKAIDO 
EARTHQUAKE 

As an example we consider the case of the 1946 Nankaido 
earthquake. For this earthquake coseismic surface displace- 
ments have been revealed in detail from the comparison of 
the pre- and post-seismic geodetic measurements. We apply 
the new inversion method developed in Section 2 to the 
coseismic displacement data and reconstruct the fault slip 
distribution of this eaithquake. Through this inversion 
analysis we demonstrate the applicability of the new 
inversion method to  actual cases. 

(bl 
Figure 8. The inverted fault slip distribution when the value of a' is 
too large. (a) Distribution of slip vectors. (b) Distribution of slip 
magnitude. 

much smaller than its optimal value. The smaller the value 
of a2, the weaker the prior constraint on the roughness of 
slip distribution. Thus, as we can expect, the inverted slip 
distribution becomes very irregular both in slip direction and 
slip magnitude. O n  the other hand, when the value of a2 is 
much greater than its optimal value, the inverted slip 
distribution becomes very smooth as shown in Fig. 8. In this 
case the subpeak of 3 .5m existing in the true slip 
distribution disappears, because the prior constraint is too 
strong. It should be noted that these slip distributions are 
also the best solutions in the sense of the maximum 
likelihood. ABIC enable us to select only one solution from 
among them as the optimal slip distribution. 

T h e  closeness of the inverted slip distribution to the true 
distribution is not necessarily a good indicator to  check 
whether the present inversion method is consistent or not, 
because it depends on the accuracy and sufficiency of data. 
For example, when the added random noise is 10 times as 
large as that in the present case, we obtain a very smooth 
slip distribution just like that in Fig. 8 as the optimal 
solution. One of the ways to  check the consistency of the 
method is to  compare the estimate of 2 obtained from 
equation (51) with its true value (1 X lops m2). In Table 1 

4.1 The 1946 Nankaido earthquake 

In southwest Japan the Philippine Sea plate is descending 
beneath the Eurasian plate a t  the Nankai trough with the 
convergence rate of 4cmyr- ' .  The  1946 Nankaido 
earthquake (M, = 8.2) is a great thrust-type earthquake that 
occurred along this plate boundary. In Fig. 9 we show the 
location of the epicentre and the tsunami source area of the 
Nankaido earthquake, determined by Kanamori (1972) and 
Hatori (1974) respectively, with those of the 1944 Tonankai 
earthquake (M, = 8.0). 

The faulting mechanism of the 1946 Nankaido earthquake 
has been studied by many investigators: Kanamori (1972) on 
the basis of seismological data, Fitch & Scholz (1971) and 
Ando (1975) on the basis of geodetic data, and Aida (1981) 
and Ando (1982) on the basis of tsunami data. The fault 
models proposed by these authors are summarized in Table 
2. Because of the different sources of information and the 
different criteria for model selection, the derived fault 
parameters should not be directly compared. Nevertheless, 
considering the very low reliability in the estimation of 
source dimensions from seismological data, we can find 
some common features to these models: (1) the faulting 
region extends from Shikoku Island to  Kii Peninsula along 
the Nankai trough; (2) the direction of fault slip is roughly 
in accord with that of plate convergence (N50"W) at the 
Nankai trough; and (3) the amount of slip in the western 
half of the faulting region is significantly larger than that in 
the eastern half. 

Table 1. The estimates of u2 for three representative cases. 

CASE a2 u2(m2) ABIC(C=O) PRIOR CONSTRAINT 

1 2.3 x 1 x 1 0 - ~  -731 
2 2.3 x lo-' 3 x 10-6 -421 
3 2.3 x lo-' 1 x 1 0 - ~  -351 

appropriate 
weak 
strong 
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Figure 9. Location map showing the cpicentres (stars) and the 
tsunami source areas (hatched areas) of the 1944 Tonankai and the 
1946 Nankaido earthquakes. 

4.2 Surface displacement data 

The surface displacements associated with the 1946 
Nankaido earthquake have been revealed in detail from the 
comparison of the pre- and post-seismic geodetic measure- 
ments by the Geographical Survey Institute of Japan (1952, 
1955). In the present inversion analysis we use the 
horizontal displacement data a t  92 triangulation points 
shown in Fig. 10 and the vertical displacement data a t  181 
bench marks shown in Fig. 11. Within the period between 
the pre- and post-seismic measurements, another great 
earthquake, the 1944 Tonankai earthquake, had occurred in 
the eastern part of Kii Peninsula. Therefore the data used 
here contain the surface displacements caused by this 
earthquake as a part. This must be called to  mind when we 
interpret the inverted result. 

The surface displacement data derived from the 
cornparison of the geodetic measurements contain the 

Figure 10. Coseismic horizontal displacements at triangulation 
points, derived from the comparison of the pre-seismic measure- 
ments (1860- 1899) and the post-seismic measurements (1947- 
1948). The triangulation points connected by the thick solid lines 
indicate the reference points used for the comparison of the-pre- 
and post-seismic measurements. 

systematic errors resulting from the movements of reference 
points. If the displacements of the reference points are 
known, we can correct the data by subtracting the apparent 
displacements induced by the rotation and expansion (or 
contraction) of base lines. In the present case, however, the 
displacements of the reference points are unknown, and so 
we must treat them as unknown parameters in the inversion 
analysis. The mathematical treatment of this problem is 
given in Matsu'ura et al. (1980). 

We suppose that the data errors remaining after the 
subtraction of the systematic errors are Gaussian with zero 
mean and covariance d E .  The data errors consist of 
measurement errors and modelling errors. The measure- 
ment errors in triangulation are generally much greater than 
those in levelling. The modelling errors will be roughly in 
proportion to  the absolute values of observed displace- 

Table 2. The fault models of the 1946 Nankaido earthquake derived from various kinds of data. The  slip-angle is measured 
counterclockwise from the horizon on each fault plane. The fault patches are numbered from the west to the east. 

Fitch & 
Scholz 
(1971) 

Kanamori 
(1972) 

Ando 
(1975) 

Aida 
(1981) 

Ando 
(1982) 

F1 
F2 
F3 
F4 
F5 

F1 
F2 

F1 
F2 

F1 
F2 

STRIKE DIP-ANGLE SLIP-ANGLE LENGTH(krn) WIDTH(km) SLIP(m) 

N70'E 30'NW 900 40 95 18 .O 
N70'E 30'NW 900 30 140 18.0 
N70°E 30'NW goo 20 100 15.0 
N70'E 30'N W 900 40 70 10.0 
N70'E 40'NW 90' 95 50 8.0 

N40°E lO'NW 90' 120 80 3.1 

N70'E 20'N W 117' 
N70'E 25'N W 117' 

N70'E 20'N W 104' 
N70'E lO'NW 127' 

150 
150 

120 6.0 
70 4 .O 

120 120 5.0 
150 70 4 .O 

N70'E 20'NW 117' 150 70 6.0 
N70°E 25ONW 117' 150 70 3 .O 

DATA 

geodetic 
data 

seismic 
data  

geodetic 
data 

tsunami 
data  

geodetic 
data 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/109/2/363/639490 by guest on 20 April 2024



312 T. Yabuki and M .  Matsu'ura 

' 4  - observed 
I32 E I34 E 1 3 6 E  

I 

0 8  c -I 
k Route 2 j 0 4  

0 4  - 
.- g o  

> 0 8  
0 4  

0 

0 4  

0 8  

0 4  

0 

0 4  

c 

Route 5 

G Route 6 

fa) 

0 50 1Wm - 
(bl 

Figure 11. Coseismic vertical displacements (a) along the levelling 
routes (b), derived from the comparison of the pre-seismic 
measurements (1910-1940) and the post-seismic measurements 
(1947-1948). The bench mark F was taken as the reference point 
for the comparison of the pre- and post-seismic measurements. 

ments. From these considerations we take the matrix 
elements of E as 

with p = 1, y = 1,  and d,, = 1 m for vertical displacements, 
and /3 = 2, y = 2, and do = 1 m for horizontal displacements. 

4.3 The fault model used for inversion 

It will be  a reasonable assumption that the main slip of the 
1946 Nankaido earthquake occurred along the boundary 
between the Philippine Sea plate and the Eurasian plate. 
The configuration of the upper boundary of the descending 
Philippine Sea plate in southwest Japan can be determined 
from the  distribution of microearthquakes (Mizoue et al. 
1983; Takagi & Matsuzawa 1987). Fig. 12 shows the 
isodepth contours of the upper boundary of the Philippine 
Sea plate, determined from the distribution of 
microearthquakes. The dip-angle of the plate boundary is 
very low (about lo") beneath Shikoku Island and relatively 
high (about 15') beneath Kii Peninsula. The abrupt change 

Figure 12. Isodepth contours of the upper boundary of the 
Philippine Sea plate, determined from the distribution of 
microearthquakes. The area enclosed by the broken line indicates 
the surface projection of the model fault region taken on the curved 
plate boundary. 

in the dip-angle of the plate boundary occurs along Kii 
Strait. 

On this curved plate boundary we take a model fault 
region as shown in Fig. 12. We divide this model fault 
region into 24 X 12 subsections and distribute 21 X 9 bicubic 
B-splines so that they cover homogeneously the whole 
model fault region. The  distribution of each slip component 
(Au, or Au2) on the curved fault surface is represented by 
the superposition of the 21 x 9 bicubic B-splines with 
various amplitudes. Therefore the number of model 
parameters sums up to  405, including 27 unknown 
parameters for the displacements of reference points in 
geodetic measurements. Following the procedure described 
in Section 2, we construct a Bayesian model with the 
hyperparameters, 0' and a' ( = a l p ' ) .  Then our problem is 
to determine the optimal values of these two hyperpara- 
meters and the 405 model parameters from the 365 observed 
surface displacement data. 

The occurrence of great earihquakes at  plate boundaries 
is now understood as the process of releasing the tectonic 
stress caused by relative plate motion. This implies that the 
slip vectors of interplate earthquakes must be in the 
direction parallel to  the relative plate motion on the whole. 
We may use such a knowledge of the slip directions as prior 
information. At  the Nankai trough, according to  Sen0 
(1977), the direction of plate convergence is about N50"W. 
Therefore, in the present inversion analysis, we constrain 
the direction of slip vectors within the range of 
N50"W f 45"; that is, 

(tan 65")Au, 5 Au2 5 -(tan 25")Au, (55) 
where Au, and Au2 indicate respectively the slip 
components perpendicular and parallel to the strike 
(N11O"W) of the Nankai trough. Substituting the expres- 
sions of Aul and Au' in equation (9) into equation (55 ) ,  
we obtain linear inequality constraints on the model 
parameters a. 

To find the maximum likelihood estimates of a under the 
linear inequality constraints, we can use the algorithm of 
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/ /\ / / 
Figure 13. The distribution of slip vectors inverted from the 
observcd surface displacement data. The area enclosed by the 
broken lines indicates the model fault region. 

non-negative least-squares (NNLS) by Lawson & Hanson 
(1974). Once the maximum likelihood estimates of a have 
been obtained, the following procedure to  find the minimum 
of ABIC is essentially the same as that described in Section 
L. 

4.4 The inverted slip distribution 

By using the fault model described in Section 4.3, we 
inverted the surface displacement data given in Section 4.2 
under the linear inequality constraints (55). The result is 
shown in Fig. 13. The inverted slip distribution has the two 
high-slip areas separated by the low-slip zone extending 
along Kii Strait. The tsunami source area of the 1946 
Nankaido earthquake, which is shown in Fig. 9, covers the 
whole of the western high-slip area and the western half of 
the eastern high-slip area. The eastern half of the eastern 
high-slip area corresponds to  the source area of the 1944 
Tonankai earthquake. The direction of dominant slip 
motion is in accord with that of plate convergence on the 
whole, but it deviates eastward about 20" from the direction 
of plate convergence (S50'E) in the western high-slip area 
and westward about 20" in the eastern high-slip area. 

Fig. 14 is the contour map showing the distribution of 

133 E 134 E 135 E 136 E 

1? \ ------- 
33 N 

32 N 

/ /\ / / 
Figure 14. Contour map showing the distribution of slip magnitude 
with estimation errors. The contour intervals are 0.5 m. The area 
with large estimation errors (21.5 m) is shaded. 

Figure 15. Comparison of the horizontal displacements (white- 
headed arrows) calculated from the inverted fault slip model with 
the observed data (black-headed arrows). The triangulation points 
connected by the thick solid lines indicate the reference points in 
triangulation. 

slip magnitude with the estimation errors calculated from 
equation (53). It should be noted that the estimation errors 
shown here are those for the optimal solution obtained 
without the constraints on the direction of slip vectors. The 
amount of fault slip reaches 6 .4m at  the centre of the 
western high-slip area. The maximum fault slip in the 
eastern high-slip area is 4.0 m. The large estimation errors in 
the region off land are clearly due to  the lack of observed 
data. From this contour map we can see that the dominant 
fault slip occurs in the region shallower than 30 km in depth. 

In Fig. 15 we compare the horizontal displacements 
calculated from the inverted fault slip model with the ob- 
served data. The calculated horizontal displacements contain 
the effects of the displacements of reference points. The 

c 0 -UP* 
A 

E 0 4 -  

0 8  / E  Y 

0 8 C  4 

Figure 16. Comparison of the vertical displacements (open squares) 
calculated from the inverted fault slip model with the observed data 
(solid squares). The numbers of levelling routes correspond to those 
in Fig. 11.  
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observed horizontal displacements are well explained by 
the inverted fault model except for a few data in the 
southwestern part of Skikoku Island. In Fig. 16 the 
calculated vertical displacements along the levelling routes 
are compared with the observed data. The numbers of the 
levelling routes correspond to those in Fig. 11. The observed 
vertical displacements are almost completely explained by 
the inverted fault model. The value of cr2 estimated from 
equation (51) is 5'x 10-4m2. This means that the data 
errors, including measurement errors and modelling errors, 
are about 5-7cm for the vertical displacements and 
10-20 cm for the horizontal displacements. 

5 DISCUSSION A N D  CONCLUSIONS 

Coseismic surface displacement data contain useful informa- 
tion about the spatial distribution of fault slip at the time of 
an earthquake. To extract the unbiased information through 
the inversion analysis of the data, we need an appropriate 
parametric model that relates the surface displacements with 
the fault slip distribution. If the appropriate parametric 
model has been given, we are able to determine the optimal 
values of the model parameters by using the maximum 
likelihood criterion. Then how can we choose the 
appropriate parametric model? As we demonstrated in the 
present paper, Akaike's Bayesian Information Criterion 
(ABIC) gives us an answer to this question. 

We developed a new inversion method to reconstruct 
the spatial distribution of fault slip from the surface 
displacement data, using ABIC. In this method, first, the 
fault slip distribution is represented by the superposition of 
bicubic B-splines with various amplitudes. Then, incor- 
porating prior information about the smoothness of fault slip 
distribution with the information coming from the observed 
surface displacement data, we construct a parametric model 
with a highly flexible structure controlled by hyperpara- 
meters. This model, called a Bayesian model, consists of a 
family of parametric models. From among the family of 
parametric models we can select the most appropri- 
ate parametric model by using ABIC. Once the 
appropriate parametric model has been selected, the 
following procedure to find the best estimates of the model 
parameters is essentially the same as that in the maximum 
likelihood method. We demonstrated the validity of the new 
inversion method through the numerical experiment using 
theoretical surface displacement data with random errors. 

By using the new inversion method we analysed the 
surface displacement data associated with the 1944 Tonankai 
and the 1946 Nankaido earthquakes. The inverted fault slip 
distribution is characterized by the two high-slip areas 
separated by a low-slip zone extending along Kii Strait. The 
source area of the 1946 Nankaido earthquake, estimated 
from tsunami data, covers the whole of the western high-slip 
area and the western half of the eastern high-slip area. The 
hypocentre of this earthquake is located at the centre of the 
eastern high-slip area. The eastern half of the eastern 
high-slip area corresponds to the source area of the 1944 
Tonankai earthquake. The direction of dominant fault slip 
motion deviates eastward about 20" from the direction of 
plate convergence (SSOOE) in the western high-slip area and 
westward about 20" in the eastern high-slip area. The 
maximum fault slip is 6.4 m in the western high-slip area and 

4.0m in the eastern high-slip area. These features of the 
inverted fault slip distribution seem to be closely related 
with the difference in rupture process between the eastern 
and western areas, pointed out by the former investigators. 
Another interesting feature revealed from the present 
inversion analysis is that the dominant fault slip occurs in 
the region shallower than 30km in depth. The depth of 
30 km may indicate the lower bound of the seismogenic zone 
in southwest Japan. 
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density mp4(&) distributed on a fault surface S can be 
expressed as 

3 3  

‘t(’) = c c Gtp,,(xl g)mp</ (g )  d S ( g )  
p = l q = l  s 

(i = 1, 2, 3) ( A l l  
where GCp., indicates the derivative of Green’s tensor G, 
with respect to g4. Because of the symmetry of mp4,  G,p.q 
and Gty,,> appear always in pairs. Concrete expressions for 
the spatial derivatives of Green’s tensor are given as follows: 

GI,,, = ( ~ / ~ J G ~ ) ( X / R ’ ) [ F ~ X ~ / R ’  + 3y/(z  + 1)’- 11, (A2) 
GI,,, = (1/4np)(X/R3)[F1 Y2/R2 + y / ( z  + 1), - 11, (A3) 
G13.3 = (1/4np)(X/R3)[3z2 + y - 11, 
GI,,, + G12.1 = (1/2np)(Y/R3)[F,X2/R2 + y/(z + l)’], 

Gll,,  + Gl3.l = (3/2np)(X2/R4)z, 
G,,,, + G,,., = ( ~ / ~ ~ P ) ( x Y / R ~ ) z ,  

(A41 

(‘45) 
(‘46) 
(A71 

G21.1 = (1/4np)(y/R3)[F,X2/R2 + Y/(Z + 1)2 - 11, 

G22,2 = (1/4np)(Y/R3)[F, y2 /R2  + 3y/(z + 1)‘ - 11, 
(A8) 

(A9) 
G23,3 = (1/4np)(Y/R3)[3z2 + y - 11, (‘410) 
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APPENDIX A 

We consider an isotropic, homogeneous, elastic half-space 
(x3 I 0) with Lame’s constants A and p .  The ith component 
ui(x) of surface displacement due to the moment tensor 

APPENDIX B 

Concrete expressions for cubic B-splines M4 with equally spaced local support (s, - 4As 5 s < sJ) are given by 

(S -s ,   AS)', 
(S - S, + ~As)’(s, - 2A.~ - S )  + (S - S, + ~ A s ) ( s  - S, + ~As)(s, - AS - S )  + (s, - S)(S - S, +  AS),, 

S, - 4As 5 s  <s,  -3As, 

S, -3As 5 s  < s J  -2As, I 0, s < S, -  AS, S, 5 S. 

24As4M4,,(s) = (S - S, + ~A.s)(s, - AS - s)’ + (sJ - S ) ( S  - S, + 3As)(sJ - AS - S )  + (s, - s),(s - S, +  AS), 

S, -2As S S  <sJ - AS, 
S, - AS S S  < s J ,  (s, - S>?> 
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